Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 342: 128283, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33067041

ABSTRACT

Casein, ß-lactoglobulin and α-lactalbumin are major milk protein allergens. In the present study, the structural modifications and antigenic response of these bovine milk allergens as induced by non-thermal treatment by atmospheric cold plasma were investigated. Spark discharge (SD) and glow discharge (GD), as previously characterized cold plasma systems, were used for protein treatments. Casein, ß-lactoglobulin and α-lactalbumin were analyzed before and after plasma treatment using SDS-PAGE, FTIR, UPLC-MS/MS and ELISA. SDS-PAGE results revealed a reduction in the casein and α-lactalbumin intensity bands after SD or GD treatments; however, the ß-lactoglobulin intensity band remained unchanged. FTIR studies revealed alterations in protein secondary structure induced by plasma, particularly contents of ß-sheet and ß-turn. The UPLC-MS/MS results showed that the amino acid compositions decreased after plasma treatments. ELISA of casein and α-lactalbumin showed a decrease in antigenicity post plasma treatment, whereas ELISA of ß-lactoglobulin showed an increase in antigenicity. The study indicates that atmospheric cold plasma can be tailored to mitigate the risk of bovine milk allergens in the dairy processing and ingredients sectors.


Subject(s)
Atmosphere/chemistry , Caseins/chemistry , Caseins/immunology , Milk/chemistry , Plasma Gases/chemistry , Whey Proteins/chemistry , Whey Proteins/immunology , Allergens/chemistry , Allergens/immunology , Animals , Cattle , Milk/immunology
2.
Food Chem ; 342: 128289, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33046283

ABSTRACT

Coffee beans were roasted to medium, dark and very dark degrees, and respective brews were in vitro digested and tested for α-glucosidase inhibition, to explore their antidiabetic potential. Phenolic acids (PA) and Maillard reaction indices (MRI) were quantified before and after digestion. Molecular docking was carried out to investigate α-glucosidase inhibition mechanisms. In vitro digested coffee inhibited α-glucosidase more effectively, compared to undigested samples, but without differences between roasting degrees. The inhibitory effect may be attributed to chlorogenic acids (CGA), which were the most abundant PA in digested coffees. In fact, molecular docking predicted a high affinity of CGA for α-glucosidase. Even though digestion nullified roasting-induced differences in α-glucosidase inhibition, CGA showed a decreasing trend upon digestion. Similarly, MRI did not differ among coffees upon digestion but decreased compared to undigested samples. Overall, the results reported in this study suggest that the presence of different compounds in coffee matrix may contribute to an antidiabetic effect.


Subject(s)
Coffee/chemistry , Digestion , Food Handling , Phenols/analysis , Phenols/pharmacology , alpha-Glucosidases/metabolism , Antioxidants/analysis , Antioxidants/pharmacology , Coffee/metabolism , Glycoside Hydrolase Inhibitors/analysis , Glycoside Hydrolase Inhibitors/pharmacology , Hot Temperature
3.
Eur J Pharm Sci ; 154: 105509, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32777258

ABSTRACT

Octreotide is approved as a one-month injectable for treatment of acromegaly and neuroendocrine tumours. Oral delivery of the octapeptide is a challenge due mainly to low intestinal epithelial permeability. The intestinal permeation enhancer (PE) salcaprozate sodium (SNAC) has Generally Regarded As Safe (GRAS) status and is a component of an approved oral peptide formulation. The purpose of the study was to examine the capacity of salcaprozate sodium (SNAC), to increase its permeability across isolated rat intestinal mucosae from five regions and across human colonic mucosae mounted in Ussing chambers. Apical-side buffers were Kreb's-Henseleit (KH), fasted simulated intestinal fluid (FaSSIF-V2), rat simulated intestinal fluid (rSIF), and colonic simulated intestinal fluid (FaSSCoF). The basal apparent permeability coefficient (Papp) of [3H]-octreotide was equally low across rat intestinal regional mucosae in KH, rSIF, and FaSSIF-V2. Apical addition of 20 mM SNAC increased the Papp across rat tissue in KH: colon (by 3.2-fold) > ileum (3.4-fold) > upper jejunum (2.3-fold) > duodenum (1.4-fold) > stomach (1.4-fold). 20 mM and 40 mM SNAC also increased the Papp by 1.5-fold and 2.1-fold respectively across human colonic mucosae in KH. Transepithelial electrical resistance (TEER) values were reduced in the presence in SNAC especially in colonic regions. LC-MS/MS analysis of permeated unlabelled octreotide across human colonic mucosae in the presence of SNAC indicated that [3H]-octreotide remained intact. No gross damage was caused to rat or human mucosae by SNAC. Attenuation of the effects of SNAC was seen in rat jejunal mucosae incubated with FaSSIF-V2 and rSIF, and also to some extent in human colonic mucosae using FaSSCoF, suggesting interaction between SNAC with buffer components. In conclusion, SNAC showed potential as an intestinal permeation enhancer for octreotide, but in vivo efficacy may be attenuated by interactions with GI luminal fluid contents.


Subject(s)
Caprylates , Intestinal Absorption , Octreotide , Animals , Caco-2 Cells , Caprylates/pharmacology , Chromatography, Liquid , Humans , Intestinal Mucosa/metabolism , Octreotide/pharmacokinetics , Permeability , Rats , Rats, Wistar , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...