Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 33(42): 11779-11787, 2017 10 24.
Article in English | MEDLINE | ID: mdl-28899095

ABSTRACT

We study the morphologies of nematic nanodrops in a vapor of a discotic nematogen by Monte Carlo simulations. The fluid interactions are modeled by a Gay-Berne model with molecular elongations of κ = 0.3 and 0.5 and different values of the energy anisotropy parameter κ' in the range of temperature T in which the nematic coexists with a vapor phase. We considered nanodrops of N = 4000 and 32 000 particles. For κ > κ', we observe that nanodrops are quite spherical (even for N = 4000 nanodrops), with a homogeneous director field for κ = 0.3 and a bipolar nematic configuration with tangential anchoring for κ = 0.5. By increasing the value of κ', nanodrops change from spherical to lens-shaped for κ = 0.3, and for κ = 0.5, spherical nanodrops with homeotropic anchoring and a disclination ring located on its equatorial plane are observed. Although no radial nanodrops are observed, isotropic liquid nanodrops with a paranematic shell and radial texture are observed for temperatures slightly above the vapor-isotropic-nematic triple point when the vapor-isotropic interface is completely wet by the nematic phase.

2.
J Phys Chem B ; 113(27): 9046-9, 2009 Jul 09.
Article in English | MEDLINE | ID: mdl-19534512

ABSTRACT

We present a primitive model for a room-temperature ionic liquid, where the cation is modeled as a charged hard spherocylinder of diameter sigma and length l and the anion as a charged hard sphere of diameter sigma. Liquid-vapor coexistence curves and critical parameters for this model have been studied by grand-canonical Monte Carlo methods. Our results show a decrease of both the critical temperature and density as the cation length l increases. These results are in qualitative agreement with recent experimental estimates of the critical parameters.

3.
J Chem Phys ; 130(15): 154504, 2009 Apr 21.
Article in English | MEDLINE | ID: mdl-19388756

ABSTRACT

We present computer simulations of the Gay-Berne model with a strong terminal dipole. We report the existence of different stable antiferroelectric interdigitated bilayered phases in this model with diverse in-plane organization. The occurrence of these phases depends crucially on the value of the molecular elongation kappa. For kappa=3 we find an interdigitated bilayered smectic-A phase (absent when there is no dipole) and a bilayered smectic-T (or crystal) with positional in-plane tetragonal ordering, different from the hexatic observed in the absence of the molecular dipole. For kappa=4, bilayered smectic-A and in-plane hexatic-ordered smectic-B (or crystal) phases are observed.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(6 Pt 1): 061701, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17677277

ABSTRACT

Parsons-Lee and Onsager theories are formulated for the isotropic-nematic transition in a binary mixture of hard rods and hard spheres. Results for the phase coexistence and for the equation of state in both phases for mixtures with different relative sizes and composition are presented. The two theories explain correctly the general behavior observed in experiments and computer simulations for these fluids. In particular, the theory accounts for the destabilization of the nematic phase when spherical or globular macromolecules are added to a system of rodlike colloids, and the entrance of the system into a demixed regime at high volume fractions of the spherical particles. Upon demixing a nematic state rich in rods coexists in equilibrium with an isotropic state much more diluted in the rodlike component. Onsager theory fails on quantitative grounds for aspect ratios of the rodlike molecules smaller than 100, and in the cases where the molar fractions of spheres becomes close to unity. On the contrary, the Parsons-Lee approximation remains accurate down to aspect ratios as small as 5. The spinodal analysis indicates that the isotropic-isotropic and nematic-nematic coexistences become feasible for sufficiently large spheres and long rods, respectively. The latter type of coexistence interferes partially with the isotropic-nematic coexistence regime of interest to the present work. Overall, the study serves to rationalize and control key aspects of the behavior of these binary nematogenic colloidal systems, which can be tuned with an appropriate choice of the relative size and molar fractions of the particles.

5.
Langmuir ; 20(22): 9861-7, 2004 Oct 26.
Article in English | MEDLINE | ID: mdl-15491226

ABSTRACT

The structure of colloidal clusters formed by long-range attractive interactions under diluted conditions is studied by means of Monte Carlo simulations. For a not-too-long attraction range, clusters show self-similar internal structure with lower density than that typical for diffusive aggregation. For long-range interactions, low kappa, nonfractal clusters are formed (dense at short scales but open at long ones). The dependence on the volume fraction shows that more-compact clusters are grown the higher the colloidal density for diffusive aggregation and attraction-driven aggregation in the fractal regime. The whole trend is explained in terms of the interpenetration among aggregates. In attraction-driven aggregations, the interpenetration of clusters competes with aggregation in the tips of the clusters, causing low-density clusters.

SELECTION OF CITATIONS
SEARCH DETAIL
...