Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Pollut ; 356: 124335, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38848957

ABSTRACT

Organic materials such as bark and biochar can be effective filter materials to treat stormwater. However, the efficiency of such filters in retaining microplastics (MPs) - an emerging stormwater pollutant - has not been sufficiently studied. This study investigated the removal and transport of a mixture of MPs commonly associated with stormwater. Different MP types (polyamide, polyethylene, polypropylene, and polystyrene) were mixed into the initial 2 cm material of horizontal bark and biochar filters of 25, 50, and 100 cm lengths. The MP types consisted of spherical and fragmented shapes in size ranges of 25-900 µm. The filters were subjected to a water flow of 5 mL/min for one week, and the total effluents were analyzed for MPs by µFTIR imaging. To gain a deeper insight, one 100 cm bark filter replica was split into 10 cm segments, and MPs in each segment were extracted and counted. The results showed that MPs were retained effectively, >97%, in all biochar and bark filters. However, MPs were detected in all effluents regardless of filter length. Effluent concentrations of 5-750 MP/L and 35-355 MP/L were measured in bark and biochar effluents, respectively, with >91% of the MP counts consisting of small-sized (25 µm) polyamide spherical particles. Combining all data, a decrease in average MP concentration was noticed with longer filters, likely attributed to channeling in a 25 and 50-cm filter. The analyses of MPs in the bark media revealed that most MPs were retained in the 0-10 cm segment but that some MPs were transported further, with 19% of polyamide retained in the 80-90 cm segment. Overall, this study shows promising results for bark and biochar filters to retain MPs, while highlighting the importance of systematic packing of filters to reduce MP emissions to the environment from polluted stormwater.


Subject(s)
Charcoal , Filtration , Microplastics , Plant Bark , Water Pollutants, Chemical , Charcoal/chemistry , Filtration/methods , Plant Bark/chemistry , Water Pollutants, Chemical/analysis , Rain/chemistry , Waste Disposal, Fluid/methods
3.
J Environ Manage ; 344: 118690, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37586166

ABSTRACT

Microplastics accumulate in stormwater and can ultimately enter freshwater recipients, and pose a serious risk to aquatic life. This study investigated the effectiveness of lab-scale horizontal flow sand filters of differing lengths (25, 50 and 100 cm) in retaining four types of thermoplastic microplastics commonly occurring in stormwater runoff (polyamide, polyethylene, polypropylene, and polyethylene terephthalate). Despite the differences in particle shape, size and density, the study revealed that more than 98% of the spiked microplastics were retained in all filters, with a slightly increased removal with increased filter length. At a flow rate of 1 mL/min and after one week of operation, 62-84% of the added microplastics agglomerated in the first 2 cm of the filters. The agglomerated microplastics included 96% of high-density fibers. Larger-sized particles were retained in the sand media, while microplastics smaller than 50 µm were more often detected in the effluent. Microplastics were quantified and identified using imaging based micro Fourier Transform Infrared Spectroscopy. The efficient retention of microplastics in low-flow horizontal sand filters, demonstrated by the results, highlights their potential importance for stormwater management. This retention is facilitated by various factors, including microplastic agglomeration, particle sedimentation of heavy fibers and favorable particle-to-media size ratios.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Polypropylenes
SELECTION OF CITATIONS
SEARCH DETAIL