Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 50(13): 2967-80, 2007 Jun 28.
Article in English | MEDLINE | ID: mdl-17536795

ABSTRACT

There remains a high unmet medical need for a safe oral therapy for thrombotic disorders. The serine protease factor Xa (fXa), with its central role in the coagulation cascade, is among the more promising targets for anticoagulant therapy and has been the subject of intensive drug discovery efforts. Investigation of a hit from high-throughput screening identified a series of thiophene-substituted anthranilamides as potent nonamidine fXa inhibitors. Lead optimization by incorporation of hydrophilic groups led to the discovery of compounds with picomolar inhibitory potency and micromolar in vitro anticoagulant activity. Based on their high potency, selectivity, oral pharmacokinetics, and efficacy in a rat venous stasis model of thrombosis, compounds ZK 814048 (10b), ZK 810388 (13a), and ZK 813039 (17m) were advanced into development.


Subject(s)
Amides/chemical synthesis , Aminopyridines/chemical synthesis , Anticoagulants/chemical synthesis , Factor Xa Inhibitors , Thiophenes/chemical synthesis , ortho-Aminobenzoates/chemical synthesis , Amides/pharmacokinetics , Amides/pharmacology , Aminopyridines/pharmacokinetics , Aminopyridines/pharmacology , Animals , Anticoagulants/pharmacokinetics , Anticoagulants/pharmacology , Crystallography, X-Ray , Dogs , Humans , In Vitro Techniques , Male , Models, Molecular , Prothrombin Time , Rats , Rats, Wistar , Structure-Activity Relationship , Thiophenes/pharmacokinetics , Thiophenes/pharmacology , Venous Thrombosis/drug therapy , ortho-Aminobenzoates/pharmacokinetics , ortho-Aminobenzoates/pharmacology
2.
Biochem Pharmacol ; 65(9): 1407-18, 2003 May 01.
Article in English | MEDLINE | ID: mdl-12732352

ABSTRACT

Benzothiophene-anthranilamide 1 (3-chloro-N-[2-[[(4-fluorophenyl)amino]carbonyl]-4-methylphenyl]benzo[b]thiophene-2-carboxamide) was discovered by high throughput screening to be a highly potent and selective non-amidine inhibitor of human factor Xa with a K(i) of 15+/-4nM. Compound 1 is a selective inhibitor of human factor Xa as suggested by the K(i)((app)) determined for nine other human serine proteases and bovine trypsin. The activity of reconstituted human prothrombinase complex was inhibited by compound 1 when assayed in physiological concentrations of the substrate prothrombin. However, 27-fold higher inhibitor concentrations were needed to achieve the same level of inhibition than were required for the inhibition of free factor Xa, due in part to non-specific binding of the inhibitor to phospholipid under the assay conditions. Failure to demonstrate enzymatic cleavage of compound 1 suggests that compound 1 is solely an inhibitor rather than a substrate for factor Xa. The inhibition of factor Xa by compound 1 was reversible upon dilution of the enzyme/inhibitor mixture. Analyses of the inhibition mechanism with Dixon, Cornish-Bowden, and Lineweaver-Burk plots showed that compound 1 is a linear mixed-type inhibitor with 5-fold higher affinity for free factor Xa than the factor Xa/substrate complex. The linear mixed-type inhibition suggests that compound 1 binds to the active site region of factor Xa, but its binding cannot be fully displaced by the substrate S2222 (1:1 mixture of N-benzoyl-Ile-Glu-Gly-Arg-p-nitroanilide and N-benzoyl-Ile-Glu(gamma-OMe)-Gly-Arg-p-nitroanilide hydrochloride). Thus, the inhibition mechanism for compound 1 is novel compared to most serine protease inhibitors including amidine-containing factor Xa inhibitors, which rely on binding to the S1 pocket of the enzyme active site. Compound 1 represents an attractive, novel structural template for further development of efficacious, safe, and potentially orally active human factor Xa inhibitors.


Subject(s)
Factor Xa Inhibitors , Thiophenes/pharmacology , ortho-Aminobenzoates/pharmacology , Anticoagulants/pharmacology , Binding Sites , Drug Evaluation, Preclinical , Humans , Phospholipids , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology
3.
Biochemistry ; 41(52): 15514-23, 2002 Dec 31.
Article in English | MEDLINE | ID: mdl-12501180

ABSTRACT

There has been intense interest in the development of factor Xa inhibitors for the treatment of thrombotic diseases. Our laboratory has developed a series of novel non-amidine inhibitors of factor Xa. This paper presents two crystal structures of compounds from this series bound to factor Xa. The first structure is derived from the complex formed between factor Xa and compound 1. Compound 1 was the first non-amidine factor Xa inhibitor from our lab that had measurable potency in an in vitro assay of anticoagulant activity. The second compound, 2, has a molar affinity for factor Xa (K(iapp)) of 7 pM and good bioavailability. The two inhibitors bind in an L-shaped conformation with a chloroaromatic ring buried deeply in the S1 pocket. The opposite end of these compounds contains a basic substituent that extends into the S4 binding site. A chlorinated phenyl ring bridges the substituents in the S1 and S4 pockets via amide linkers. The overall conformation is similar to the previously published structures for amidine-based inhibitors complexed with factor Xa. However, there are significant differences in the interactions between the inhibitor and the protein at the atomic level. Most notably, there is no group that forms a salt bridge with the carboxylic acid at the base of the S1 pocket (Asp189). Each inhibitor forms only one well-defined hydrogen bond to the protein. There are no direct charge-charge interactions. The results indicate that electrostatic interactions play a secondary role in the binding of these potent inhibitors.


Subject(s)
Anticoagulants/chemistry , Factor Xa Inhibitors , Serine Proteinase Inhibitors/chemistry , Thiophenes/chemistry , ortho-Aminobenzoates/chemistry , Amidines/chemistry , Crystallization , Crystallography, X-Ray , Humans , Molecular Conformation , Oxazoles/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...