Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
2.
Genet Med ; 25(1): 63-75, 2023 01.
Article in English | MEDLINE | ID: mdl-36399132

ABSTRACT

PURPOSE: Witteveen-Kolk syndrome (WITKOS) is a rare, autosomal dominant neurodevelopmental disorder caused by heterozygous loss-of-function alterations in the SIN3A gene. WITKOS has variable expressivity that commonly overlaps with other neurodevelopmental disorders. In this study, we characterized a distinct DNA methylation epigenetic signature (episignature) distinguishing WITKOS from unaffected individuals as well as individuals with other neurodevelopmental disorders with episignatures and described 9 previously unpublished individuals with SIN3A haploinsufficiency. METHODS: We studied the phenotypic characteristics and the genome-wide DNA methylation in the peripheral blood samples of 20 individuals with heterozygous alterations in SIN3A. A total of 14 samples were used for the identification of the episignature and building of a predictive diagnostic biomarker, whereas the diagnostic model was used to investigate the methylation pattern of the remaining 6 samples. RESULTS: A predominantly hypomethylated DNA methylation profile specific to WITKOS was identified, and the classifier model was able to diagnose a previously unresolved test case. The episignature was sensitive enough to detect individuals with varying degrees of phenotypic severity carrying SIN3A haploinsufficient variants. CONCLUSION: We identified a novel, robust episignature in WITKOS due to SIN3A haploinsufficiency. This episignature has the potential to aid identification and diagnosis of individuals with WITKOS.


Subject(s)
DNA Methylation , Neurodevelopmental Disorders , Humans , DNA Methylation/genetics , Haploinsufficiency/genetics , Neurodevelopmental Disorders/genetics , Genome
3.
Genet Med ; 24(11): 2399-2407, 2022 11.
Article in English | MEDLINE | ID: mdl-36083289

ABSTRACT

PURPOSE: RABGAP1 is a GTPase-activating protein implicated in a variety of cellular and molecular processes, including mitosis, cell migration, vesicular trafficking, and mTOR signaling. There are no known Mendelian diseases caused by variants in RABGAP1. METHODS: Through GeneMatcher, we identified 5 patients from 3 unrelated families with homozygous variants in the RABGAP1 gene found on exome sequencing. We established lymphoblastoid cells lines derived from an affected individual and her parents and performed RNA sequencing and functional studies. Rabgap1 knockout mice were generated and phenotyped. RESULTS: We report 5 patients presenting with a common constellation of features, including global developmental delay/intellectual disability, microcephaly, bilateral sensorineural hearing loss, and seizures, as well as overlapping dysmorphic features. Neuroimaging revealed common features, including delayed myelination, white matter volume loss, ventriculomegaly, and thinning of the corpus callosum. Functional analysis of patient cells revealed downregulated mTOR signaling and abnormal localization of early endosomes and lysosomes. Rabgap1 knockout mice exhibited several features in common with the patient cohort, including microcephaly, thinning of the corpus callosum, and ventriculomegaly. CONCLUSION: Collectively, our results provide evidence of a novel neurodevelopmental syndrome caused by biallelic loss-of-function variants in RABGAP1.


Subject(s)
Hydrocephalus , Intellectual Disability , Microcephaly , Neurodevelopmental Disorders , Animals , Mice , Female , Humans , Microcephaly/genetics , Pedigree , Intellectual Disability/genetics , Syndrome , Mice, Knockout , TOR Serine-Threonine Kinases , Neurodevelopmental Disorders/genetics
4.
Hum Mol Genet ; 31(19): 3231-3244, 2022 09 29.
Article in English | MEDLINE | ID: mdl-35234901

ABSTRACT

BACKGROUND: The endoplasmic reticulum (ER)-membrane protein complex (EMC) is a multi-protein transmembrane complex composed of 10 subunits that functions as a membrane-protein chaperone. Variants in EMC1 lead to neurodevelopmental delay and cerebellar degeneration. Multiple families with biallelic variants have been published, yet to date, only a single report of a monoallelic variant has been described, and functional evidence is sparse. METHODS: Exome sequencing was used to investigate the genetic cause underlying severe developmental delay in three unrelated children. EMC1 variants were modeled in Drosophila, using loss-of-function (LoF) and overexpression studies. Glial-specific and neuronal-specific assays were used to determine whether the dysfunction was specific to one cell type. RESULTS: Exome sequencing identified de novo variants in EMC1 in three individuals affected by global developmental delay, hypotonia, seizures, visual impairment and cerebellar atrophy. All variants were located at Pro582 or Pro584. Drosophila studies indicated that imbalance of EMC1-either overexpression or knockdown-results in pupal lethality and suggest that the tested homologous variants are LoF alleles. In addition, glia-specific gene dosage, overexpression or knockdown, of EMC1 led to lethality, whereas neuron-specific alterations were tolerated. DISCUSSION: We establish de novo monoallelic EMC1 variants as causative of a neurological disease trait by providing functional evidence in a Drosophila model. The identified variants failed to rescue the lethality of a null allele. Variations in dosage of the wild-type EMC1, specifically in glia, lead to pupal lethality, which we hypothesize results from the altered stoichiometry of the multi-subunit protein complex EMC.


Subject(s)
Cerebellar Diseases , Drosophila Proteins , Intellectual Disability , Nervous System Malformations , Neurodegenerative Diseases , Neurodevelopmental Disorders , Animals , Basic Helix-Loop-Helix Transcription Factors , Cerebellar Diseases/genetics , Drosophila/genetics , Drosophila Proteins/genetics , Membrane Proteins/genetics , Neurodevelopmental Disorders/genetics , Neuroglia , Repressor Proteins
5.
Eur J Paediatr Neurol ; 32: 128-135, 2021 May.
Article in English | MEDLINE | ID: mdl-33971557

ABSTRACT

Genetic testing and counselling are increasingly important in epilepsy care, aiming at finding a diagnosis, understanding aetiology and improving treatment and outcome. The psychological impact of genetic counselling from patients' or parents' perspectives is, however, unknown. We studied the counselee-reported outcome of genetic counselling before and after genetic testing for epilepsy by evaluating empowerment - a key outcome goal of counselling reflecting cognitive, decisional and behavioural control, emotional regulation and hope - and anxiety. We asked patients or their parents (for those <16 years or intellectually disabled) referred for genetic testing for epilepsy in two university hospitals between June 2014 and 2017 to complete the same two questionnaires at three timepoints: before and after pre-test counselling and after post-test counselling. Empowerment was measured with the Genetic Counselling Outcome Scale (GCOS-18); anxiety with the short State Trait Anxiety Inventory (STAI-6). A total of 63 participants (55 parents with the age of 29-66 years; 8 patients with the age of 21-42 years) were included in our study. Empowerment significantly increased during the genetic counselling trajectory with a medium effect size (p < 0.001, d = 0.57). A small but significant increase in empowerment was already seen after pre-test counselling (p = 0.038, d = 0.29). Anxiety did not change significantly during the counselling trajectory (p = 0.223, d = -0.24). Our study highlights that patients with epilepsy or their parents show a clinically relevant increase in empowerment after genetic counselling. Empowerment was already increased after pre-test counselling, suggesting the importance of counselling before initiating genetic testing for epilepsy. However, individual differences in changes in empowerment and anxiety were seen, suggesting that counselling could be further improved, based on individual needs.


Subject(s)
Anxiety/psychology , Epilepsy/psychology , Genetic Counseling/psychology , Patient Participation/psychology , Adult , Aged , Female , Genetic Testing , Humans , Male , Middle Aged , Parents/psychology , Patient Participation/methods , Surveys and Questionnaires , Young Adult
6.
Genet Med ; 23(7): 1234-1245, 2021 07.
Article in English | MEDLINE | ID: mdl-33824499

ABSTRACT

PURPOSE: Proline Rich 12 (PRR12) is a gene of unknown function with suspected DNA-binding activity, expressed in developing mice and human brains. Predicted loss-of-function variants in this gene are extremely rare, indicating high intolerance of haploinsufficiency. METHODS: Three individuals with intellectual disability and iris anomalies and truncating de novo PRR12 variants were described previously. We add 21 individuals with similar PRR12 variants identified via matchmaking platforms, bringing the total number to 24. RESULTS: We observed 12 frameshift, 6 nonsense, 1 splice-site, and 2 missense variants and one patient with a gross deletion involving PRR12. Three individuals had additional genetic findings, possibly confounding the phenotype. All patients had developmental impairment. Variable structural eye defects were observed in 12/24 individuals (50%) including anophthalmia, microphthalmia, colobomas, optic nerve and iris abnormalities. Additional common features included hypotonia (61%), heart defects (52%), growth failure (54%), and kidney anomalies (35%). PrediXcan analysis showed that phecodes most strongly associated with reduced predicted PRR12 expression were enriched for eye- (7/30) and kidney- (4/30) phenotypes, such as wet macular degeneration and chronic kidney disease. CONCLUSION: These findings support PRR12 haploinsufficiency as a cause for a novel disorder with a wide clinical spectrum marked chiefly by neurodevelopmental and eye abnormalities.


Subject(s)
Haploinsufficiency , Intellectual Disability , Animals , Haploinsufficiency/genetics , Humans , Intellectual Disability/genetics , Mice , Muscle Hypotonia , Mutation, Missense , Phenotype
7.
Eur J Hum Genet ; 29(9): 1418-1423, 2021 09.
Article in English | MEDLINE | ID: mdl-33603161

ABSTRACT

The Koolen-de Vries syndrome (KdVS) is a multisystem syndrome with variable facial features caused by a 17q21.31 microdeletion or KANSL1 truncating variant. As the facial gestalt of KdVS has resemblance with the gestalt of the 22q11.2 deletion syndrome (22q11.2DS), we assessed whether our previously described hybrid quantitative facial phenotyping algorithm could distinguish between these two syndromes, and whether there is a facial difference between the molecular KdVS subtypes. We applied our algorithm to 2D photographs of 97 patients with KdVS (78 microdeletions, 19 truncating variants (likely) causing KdVS) and 48 patients with 22q11.2DS as well as age, gender and ethnicity matched controls with intellectual disability (n = 145). The facial gestalts of KdVS and 22q11.2DS were both recognisable through significant clustering by the hybrid model, yet different from one another (p = 7.5 × 10-10 and p = 0.0052, respectively). Furthermore, the facial gestalts of KdVS caused by a 17q21.31 microdeletion and KANSL1 truncating variant (likely) causing KdVS were indistinguishable (p = 0.981 and p = 0.130). Further application to three patients with a variant of unknown significance in KANSL1 showed that these faces do not match KdVS. Our data highlight quantitative facial phenotyping not only as a powerful tool to distinguish syndromes with overlapping facial dysmorphisms but also to establish pathogenicity of variants of unknown clinical significance.


Subject(s)
22q11 Deletion Syndrome/pathology , Abnormalities, Multiple/pathology , Face/abnormalities , Intellectual Disability/pathology , Phenotype , 22q11 Deletion Syndrome/epidemiology , 22q11 Deletion Syndrome/genetics , Abnormalities, Multiple/epidemiology , Abnormalities, Multiple/genetics , Adolescent , Adult , Age Factors , Child , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 17/genetics , Diagnosis, Differential , Female , Humans , Infant , Intellectual Disability/epidemiology , Intellectual Disability/genetics , Male , Nuclear Proteins/genetics , Sex Factors
8.
Nat Commun ; 11(1): 5797, 2020 11 16.
Article in English | MEDLINE | ID: mdl-33199684

ABSTRACT

ARGONAUTE-2 and associated miRNAs form the RNA-induced silencing complex (RISC), which targets mRNAs for translational silencing and degradation as part of the RNA interference pathway. Despite the essential nature of this process for cellular function, there is little information on the role of RISC components in human development and organ function. We identify 13 heterozygous mutations in AGO2 in 21 patients affected by disturbances in neurological development. Each of the identified single amino acid mutations result in impaired shRNA-mediated silencing. We observe either impaired RISC formation or increased binding of AGO2 to mRNA targets as mutation specific functional consequences. The latter is supported by decreased phosphorylation of a C-terminal serine cluster involved in mRNA target release, increased formation of dendritic P-bodies in neurons and global transcriptome alterations in patient-derived primary fibroblasts. Our data emphasize the importance of gene expression regulation through the dynamic AGO2-RNA association for human neuronal development.


Subject(s)
Argonaute Proteins/genetics , Germ Cells/metabolism , Mutation/genetics , Nervous System/growth & development , Nervous System/metabolism , RNA Interference , Adolescent , Animals , Argonaute Proteins/chemistry , Child , Child, Preschool , Cluster Analysis , Dendrites/metabolism , Fibroblasts/metabolism , Gene Silencing , HEK293 Cells , Hippocampus/pathology , Humans , Mice , Molecular Dynamics Simulation , Neurons/metabolism , Phosphorylation , Protein Domains , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , RNA-Induced Silencing Complex/metabolism , Rats , Transcriptome/genetics
9.
Am J Med Genet A ; 182(12): 2909-2918, 2020 12.
Article in English | MEDLINE | ID: mdl-32954639

ABSTRACT

Limb reduction defects (LRDs) that affect multiple limbs are considered to be more often heritable, but only few studies have substantiated this. We aimed to investigate if an etiological diagnosis (genetic disorder or clinically recognizable disorder) is more likely to be made when multiple limbs are affected compared to when only one limb is affected. We used data from EUROCAT Northern Netherlands and included 391 fetuses and children with LRDs born in 1981-2017. Cases were classified as having a transverse, longitudinal (preaxial/postaxial/central/mixed), intercalary, or complex LRD of one or more limbs and as having an isolated LRD or multiple congenital anomalies (MCA). We calculated the probability of obtaining an etiological diagnosis in cases with multiple affected limbs versus one affected limb using relative risk (RR) scores and Fisher's exact test. We showed that an etiological diagnosis was made three times more often when an LRD occurred in multiple limbs compared to when it occurred in one limb (RR 2.9, 95% CI 2.2-3.8, p < 0.001). No genetic disorders were found in isolated cases with only one affected limb, whereas a genetic disorder was identified in 16% of MCA cases with one affected limb. A clinically recognizable disorder was found in 47% of MCA cases with one affected limb. Genetic counseling rates were similar. We conclude that reduction defects of multiple limbs are indeed more often heritable. Genetic testing seems less useful in isolated cases with one affected limb, but is warranted in MCA cases with one affected limb.


Subject(s)
Abnormalities, Multiple/pathology , Limb Deformities, Congenital/diagnosis , Abnormalities, Multiple/epidemiology , Abnormalities, Multiple/etiology , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Limb Deformities, Congenital/epidemiology , Limb Deformities, Congenital/etiology , Male , Mass Screening , Netherlands/epidemiology , Prognosis , Registries , Retrospective Studies , Risk
10.
Am J Hum Genet ; 106(5): 623-631, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32275884

ABSTRACT

Nucleoporins (NUPs) are an essential component of the nuclear-pore complex, which regulates nucleocytoplasmic transport of macromolecules. Pathogenic variants in NUP genes have been linked to several inherited human diseases, including a number with progressive neurological degeneration. We present six affected individuals with bi-allelic truncating variants in NUP188 and strikingly similar phenotypes and clinical courses, representing a recognizable genetic syndrome; the individuals are from four unrelated families. Key clinical features include congenital cataracts, hypotonia, prenatal-onset ventriculomegaly, white-matter abnormalities, hypoplastic corpus callosum, congenital heart defects, and central hypoventilation. Characteristic dysmorphic features include small palpebral fissures, a wide nasal bridge and nose, micrognathia, and digital anomalies. All affected individuals died as a result of respiratory failure, and five of them died within the first year of life. Nuclear import of proteins was decreased in affected individuals' fibroblasts, supporting a possible disease mechanism. CRISPR-mediated knockout of NUP188 in Drosophila revealed motor deficits and seizure susceptibility, partially recapitulating the neurological phenotype seen in affected individuals. Removal of NUP188 also resulted in aberrant dendrite tiling, suggesting a potential role of NUP188 in dendritic development. Two of the NUP188 pathogenic variants are enriched in the Ashkenazi Jewish population in gnomAD, a finding we confirmed with a separate targeted population screen of an international sampling of 3,225 healthy Ashkenazi Jewish individuals. Taken together, our results implicate bi-allelic loss-of-function NUP188 variants in a recessive syndrome characterized by a distinct neurologic, ophthalmologic, and facial phenotype.


Subject(s)
Alleles , Brain/abnormalities , Drosophila Proteins/genetics , Eye Abnormalities/genetics , Heart Defects, Congenital/genetics , Loss of Function Mutation/genetics , Nuclear Pore Complex Proteins/genetics , Active Transport, Cell Nucleus , Animals , Cell Nucleus/metabolism , Child, Preschool , Dendrites/metabolism , Dendrites/pathology , Drosophila melanogaster , Eye Abnormalities/mortality , Female , Fibroblasts , Genes, Recessive , Heart Defects, Congenital/mortality , Humans , Infant , Infant, Newborn , Jews/genetics , Male , Nuclear Pore Complex Proteins/deficiency , Seizures/metabolism , Syndrome , beta Karyopherins/metabolism
11.
Genet Med ; 22(3): 524-537, 2020 03.
Article in English | MEDLINE | ID: mdl-31578471

ABSTRACT

PURPOSE: Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene encoding a transcription factor regulating cell fate and differentiation in neurogenesis and other discrete developmental processes. The genetic alterations described so far are mainly microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its clinical and genetic spectrum, and the pathophysiological mechanisms involved. METHODS: Clinical and genetic data were collected through GeneMatcher and clinical or genetic networks for 41 novel patients harboring various types ofSOX5 alterations. Functional consequences of selected substitutions were investigated. RESULTS: Microdeletions and truncating variants occurred throughout SOX5. In contrast, most missense variants clustered in the pivotal SOX-specific high-mobility-group domain. The latter variants prevented SOX5 from binding DNA and promoting transactivation in vitro, whereas missense variants located outside the high-mobility-group domain did not. Clinical manifestations and severity varied among patients. No clear genotype-phenotype correlations were found, except that missense variants outside the high-mobility-group domain were generally better tolerated. CONCLUSIONS: This study extends the clinical and genetic spectrum associated with LAMSHF and consolidates evidence that SOX5 haploinsufficiency leads to variable degrees of intellectual disability, language delay, and other clinical features.


Subject(s)
DNA-Binding Proteins/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , SOXD Transcription Factors/genetics , Adolescent , Adult , Animals , Child , Child, Preschool , Female , Genetic Predisposition to Disease , Haploinsufficiency/genetics , Humans , Infant , Intellectual Disability/diagnosis , Intellectual Disability/pathology , Language Development Disorders/diagnosis , Language Development Disorders/genetics , Language Development Disorders/pathology , Male , Mutation, Missense/genetics , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/pathology , Pedigree , Phenotype , Young Adult
12.
Am J Hum Genet ; 105(3): 509-525, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31422817

ABSTRACT

The human RNA helicase DDX6 is an essential component of membrane-less organelles called processing bodies (PBs). PBs are involved in mRNA metabolic processes including translational repression via coordinated storage of mRNAs. Previous studies in human cell lines have implicated altered DDX6 in molecular and cellular dysfunction, but clinical consequences and pathogenesis in humans have yet to be described. Here, we report the identification of five rare de novo missense variants in DDX6 in probands presenting with intellectual disability, developmental delay, and similar dysmorphic features including telecanthus, epicanthus, arched eyebrows, and low-set ears. All five missense variants (p.His372Arg, p.Arg373Gln, p.Cys390Arg, p.Thr391Ile, and p.Thr391Pro) are located in two conserved motifs of the RecA-2 domain of DDX6 involved in RNA binding, helicase activity, and protein-partner binding. We use functional studies to demonstrate that the first variants identified (p.Arg373Gln and p.Cys390Arg) cause significant defects in PB assembly in primary fibroblast and model human cell lines. These variants' interactions with several protein partners were also disrupted in immunoprecipitation assays. Further investigation via complementation assays included the additional variants p.Thr391Ile and p.Thr391Pro, both of which, similarly to p.Arg373Gln and p.Cys390Arg, demonstrated significant defects in P-body assembly. Complementing these molecular findings, modeling of the variants on solved protein structures showed distinct spatial clustering near known protein binding regions. Collectively, our clinical and molecular data describe a neurodevelopmental syndrome associated with pathogenic missense variants in DDX6. Additionally, we suggest DDX6 join the DExD/H-box genes DDX3X and DHX30 in an emerging class of neurodevelopmental disorders involving RNA helicases.


Subject(s)
DEAD-box RNA Helicases/genetics , Intellectual Disability/genetics , Mutation, Missense , Proto-Oncogene Proteins/genetics , RNA/genetics , Humans
13.
PLoS Genet ; 15(4): e1008088, 2019 04.
Article in English | MEDLINE | ID: mdl-31034465

ABSTRACT

PIK3C2A is a class II member of the phosphoinositide 3-kinase (PI3K) family that catalyzes the phosphorylation of phosphatidylinositol (PI) into PI(3)P and the phosphorylation of PI(4)P into PI(3,4)P2. At the cellular level, PIK3C2A is critical for the formation of cilia and for receptor mediated endocytosis, among other biological functions. We identified homozygous loss-of-function mutations in PIK3C2A in children from three independent consanguineous families with short stature, coarse facial features, cataracts with secondary glaucoma, multiple skeletal abnormalities, neurological manifestations, among other findings. Cellular studies of patient-derived fibroblasts found that they lacked PIK3C2A protein, had impaired cilia formation and function, and demonstrated reduced proliferative capacity. Collectively, the genetic and molecular data implicate mutations in PIK3C2A in a new Mendelian disorder of PI metabolism, thereby shedding light on the critical role of a class II PI3K in growth, vision, skeletal formation and neurological development. In particular, the considerable phenotypic overlap, yet distinct features, between this syndrome and Lowe's syndrome, which is caused by mutations in the PI-5-phosphatase OCRL, highlight the key role of PI metabolizing enzymes in specific developmental processes and demonstrate the unique non-redundant functions of each enzyme. This discovery expands what is known about disorders of PI metabolism and helps unravel the role of PIK3C2A and class II PI3Ks in health and disease.


Subject(s)
Bone Diseases, Developmental/genetics , Cataract/genetics , Ciliary Motility Disorders/genetics , Dwarfism/genetics , Mutation , Phosphatidylinositol 3-Kinases/genetics , Adolescent , Adult , Child , Consanguinity , Female , Fibroblasts/metabolism , Humans , Male , Pedigree , Phenotype , Young Adult
14.
Brain ; 142(4): 867-884, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30879067

ABSTRACT

Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.


Subject(s)
Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/physiology , Adult , Brain/pathology , Carrier Proteins/genetics , Cell Cycle/physiology , Cilia/metabolism , Female , Genetic Association Studies/methods , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Infant , Infant, Newborn , Male , Malformations of Cortical Development/genetics , Malformations of Cortical Development/metabolism , Microcephaly/genetics , Mutation , Nervous System Malformations/genetics , Polymicrogyria/etiology , Polymicrogyria/pathology
15.
Eur J Med Genet ; 62(4): 265-269, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30125676

ABSTRACT

We studied the presence of benign infantile epilepsy (BIE), paroxysmal kinesigenic dyskinesia (PKD), and PKD with infantile convulsions (PKD/IC) in patients with a 16p11.2 deletion including PRRT2 or with a PRRT2 loss-of-function sequence variant. Index patients were recruited from seven Dutch university hospitals. The presence of BIE, PKD and PKD/IC was retrospectively evaluated using questionnaires and medical records. We included 33 patients with a 16p11.2 deletion: three (9%) had BIE, none had PKD or PKD/IC. Twelve patients had a PRRT2 sequence variant: BIE was present in four (p = 0.069), PKD in six (p < 0.001) and PKD/IC in two (p = 0.067). Most patients with a deletion had undergone genetic testing because of developmental problems (87%), whereas all patients with a sequence variant were tested because of a movement disorder (55%) or epilepsy (45%). BIE, PKD and PKD/IC clearly showed incomplete penetrance in patients with 16p11.2 deletions, but were found in all and 95% of patients with a PRRT2 sequence variant in our study and a large literature cohort, respectively. Deletions and sequence variants have the same underlying loss-of-function disease mechanism. Thus, differences in ascertainment have led to overestimating the frequency of BIE, PKD and PKD/IC in patients with a PRRT2 sequence variant. This has important implications for counseling if genome-wide sequencing shows such variants in patients not presenting the PRRT2-related phenotypes.


Subject(s)
Autistic Disorder/genetics , Chromosome Disorders/genetics , Intellectual Disability/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Phenotype , Adolescent , Adult , Autistic Disorder/pathology , Child , Child, Preschool , Chromosome Deletion , Chromosome Disorders/pathology , Chromosomes, Human, Pair 16/genetics , Female , Humans , Intellectual Disability/pathology , Male
16.
Brain ; 142(1): 80-92, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30544257

ABSTRACT

Alterations of the N-methyl-d-aspartate receptor (NMDAR) subunit GluN2A, encoded by GRIN2A, have been associated with a spectrum of neurodevelopmental disorders with prominent speech-related features, and epilepsy. We performed a comprehensive assessment of phenotypes with a standardized questionnaire in 92 previously unreported individuals with GRIN2A-related disorders. Applying the criteria of the American College of Medical Genetics and Genomics to all published variants yielded 156 additional cases with pathogenic or likely pathogenic variants in GRIN2A, resulting in a total of 248 individuals. The phenotypic spectrum ranged from normal or near-normal development with mild epilepsy and speech delay/apraxia to severe developmental and epileptic encephalopathy, often within the epilepsy-aphasia spectrum. We found that pathogenic missense variants in transmembrane and linker domains (misTMD+Linker) were associated with severe developmental phenotypes, whereas missense variants within amino terminal or ligand-binding domains (misATD+LBD) and null variants led to less severe developmental phenotypes, which we confirmed in a discovery (P = 10-6) as well as validation cohort (P = 0.0003). Other phenotypes such as MRI abnormalities and epilepsy types were also significantly different between the two groups. Notably, this was paralleled by electrophysiology data, where misTMD+Linker predominantly led to NMDAR gain-of-function, while misATD+LBD exclusively caused NMDAR loss-of-function. With respect to null variants, we show that Grin2a+/- cortical rat neurons also had reduced NMDAR function and there was no evidence of previously postulated compensatory overexpression of GluN2B. We demonstrate that null variants and misATD+LBD of GRIN2A do not only share the same clinical spectrum (i.e. milder phenotypes), but also result in similar electrophysiological consequences (loss-of-function) opposing those of misTMD+Linker (severe phenotypes; predominantly gain-of-function). This new pathomechanistic model may ultimately help in predicting phenotype severity as well as eligibility for potential precision medicine approaches in GRIN2A-related disorders.


Subject(s)
Epilepsy/genetics , Neurodevelopmental Disorders/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Adolescent , Adult , Aged , Animals , Cells, Cultured , Cerebellar Cortex/metabolism , Child , Child, Preschool , Epilepsy/physiopathology , Female , Genotype , Humans , Infant , Male , Middle Aged , Mutation , Neurodevelopmental Disorders/physiopathology , Phenotype , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/physiology , Young Adult
18.
Am J Hum Genet ; 102(5): 995-1007, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29656858

ABSTRACT

Developmental and epileptic encephalopathies (DEEs) represent a large clinical and genetic heterogeneous group of neurodevelopmental diseases. The identification of pathogenic genetic variants in DEEs remains crucial for deciphering this complex group and for accurately caring for affected individuals (clinical diagnosis, genetic counseling, impacting medical, precision therapy, clinical trials, etc.). Whole-exome sequencing and intensive data sharing identified a recurrent de novo PACS2 heterozygous missense variant in 14 unrelated individuals. Their phenotype was characterized by epilepsy, global developmental delay with or without autism, common cerebellar dysgenesis, and facial dysmorphism. Mixed focal and generalized epilepsy occurred in the neonatal period, controlled with difficulty in the first year, but many improved in early childhood. PACS2 is an important PACS1 paralog and encodes a multifunctional sorting protein involved in nuclear gene expression and pathway traffic regulation. Both proteins harbor cargo(furin)-binding regions (FBRs) that bind cargo proteins, sorting adaptors, and cellular kinase. Compared to the defined PACS1 recurrent variant series, individuals with PACS2 variant have more consistently neonatal/early-infantile-onset epilepsy that can be challenging to control. Cerebellar abnormalities may be similar but PACS2 individuals exhibit a pattern of clear dysgenesis ranging from mild to severe. Functional studies demonstrated that the PACS2 recurrent variant reduces the ability of the predicted autoregulatory domain to modulate the interaction between the PACS2 FBR and client proteins, which may disturb cellular function. These findings support the causality of this recurrent de novo PACS2 heterozygous missense in DEEs with facial dysmorphim and cerebellar dysgenesis.


Subject(s)
Cerebellar Diseases/genetics , Epilepsy, Generalized/genetics , Facies , Mutation, Missense/genetics , Vesicular Transport Proteins/genetics , Age of Onset , Child, Preschool , Female , Heterozygote , Humans , Infant , Infant, Newborn , Male , Phenotype
19.
Sci Rep ; 8(1): 4170, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29520014

ABSTRACT

Recently, the Mucin-1 (MUC1) gene has been identified as a causal gene of autosomal dominant tubulointerstitial kidney disease (ADTKD). Most causative mutations are buried within a GC-rich 60 basepair variable number of tandem repeat (VNTR), which escapes identification by massive parallel sequencing methods due to the complexity of the VNTR. We established long read single molecule real time sequencing (SMRT) targeted to the MUC1-VNTR as an alternative strategy to the snapshot assay. Our approach allows complete VNTR assembly, thereby enabling the detection of all variants residing within the VNTR and simultaneous determination of VNTR length. We present high resolution data on the VNTR architecture for a cohort of snapshot positive (n = 9) and negative (n = 7) ADTKD families. By SMRT sequencing we could confirm the diagnosis in all previously tested cases, reconstruct both VNTR alleles and determine the exact position of the causative variant in eight of nine families. This study demonstrates that precise positioning of the causative mutation(s) and identification of other coding and noncoding sequence variants in ADTKD-MUC1 is feasible. SMRT sequencing could provide a powerful tool to uncover potential factors encoded within the VNTR that associate with intra- and interfamilial phenotype variability of MUC1 related kidney disease.


Subject(s)
Alleles , High-Throughput Nucleotide Sequencing , Minisatellite Repeats , Mucin-1/genetics , Polycystic Kidney, Autosomal Dominant/genetics , Cohort Studies , DNA Mutational Analysis , Female , Humans , Male
20.
Am J Hum Genet ; 101(4): 503-515, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28942966

ABSTRACT

Bromodomain PHD finger transcription factor (BPTF) is the largest subunit of nucleosome remodeling factor (NURF), a member of the ISWI chromatin-remodeling complex. However, the clinical consequences of disruption of this complex remain largely uncharacterized. BPTF is required for anterior-posterior axis formation of the mouse embryo and was shown to promote posterior neuroectodermal fate by enhancing Smad2-activated wnt8 expression in zebrafish. Here, we report eight loss-of-function and two missense variants (eight de novo and two of unknown origin) in BPTF on 17q24.2. The BPTF variants were found in unrelated individuals aged between 2.1 and 13 years, who manifest variable degrees of developmental delay/intellectual disability (10/10), speech delay (10/10), postnatal microcephaly (7/9), and dysmorphic features (9/10). Using CRISPR-Cas9 genome editing of bptf in zebrafish to induce a loss of gene function, we observed a significant reduction in head size of F0 mutants compared to control larvae. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and phospho-histone H3 (PH3) staining to assess apoptosis and cell proliferation, respectively, showed a significant increase in cell death in F0 mutants compared to controls. Additionally, we observed a substantial increase of the ceratohyal angle of the craniofacial skeleton in bptf F0 mutants, indicating abnormal craniofacial patterning. Taken together, our data demonstrate the pathogenic role of BPTF haploinsufficiency in syndromic neurodevelopmental anomalies and extend the clinical spectrum of human disorders caused by ablation of chromatin remodeling complexes.


Subject(s)
Abnormalities, Multiple/genetics , Antigens, Nuclear/genetics , Craniofacial Abnormalities/genetics , Gene Expression Regulation, Developmental , Haploinsufficiency/genetics , Language Development Disorders/genetics , Microcephaly/genetics , Nerve Tissue Proteins/genetics , Transcription Factors/genetics , Abnormalities, Multiple/pathology , Adolescent , Animals , Antigens, Nuclear/metabolism , CRISPR-Cas Systems , Cell Proliferation , Cells, Cultured , Child , Child, Preschool , Chromatin Assembly and Disassembly , Cohort Studies , Craniofacial Abnormalities/pathology , Female , Gene Editing , Haploinsufficiency/physiology , Humans , Language Development Disorders/pathology , Larva/genetics , Larva/growth & development , Male , Microcephaly/pathology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Phenotype , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Zebrafish/genetics , Zebrafish/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...