Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 226(2): 258-269, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35429403

ABSTRACT

BACKGROUND: Recurrent respiratory syncytial virus (RSV) infection requiring hospitalization is rare and the underlying mechanism is unknown. We aimed to determine the role of CD14-mediated immunity in the pathogenesis of recurrent RSV infection. METHODS: We performed genotyping and longitudinal immunophenotyping of the first patient with a genetic CD14 deficiency who developed recurrent RSV infection. We analyzed gene expression profiles and interleukin (IL)-6 production by patient peripheral blood mononuclear cells in response to RSV pre- and post-fusion (F) protein. We generated CD14-deficient human nasal epithelial cells cultured at air-liquid interface (HNEC-ALI) of patient-derived cells and after CRISPR-based gene editing of control cells. We analyzed viral replication upon RSV infection. RESULTS: Sanger sequencing revealed a homozygous single-nucleotide deletion in CD14, resulting in absence of the CD14 protein in the index patient. In vitro, viral replication was similar in wild-type and CD14-/- HNEC-ALI. Loss of immune cell CD14 led to impaired cytokine and chemokine responses to RSV pre- and post-F protein, characterized by absence of IL-6 production. CONCLUSIONS: We report an association of recurrent RSV bronchiolitis with a loss of CD14 function in immune cells. Lack of CD14 function led to defective immune responses to RSV pre- and post-F protein without a change in viral replication.


Subject(s)
Respiratory Syncytial Virus Infections , Cytokines , Humans , Leukocytes, Mononuclear/metabolism , Lipopolysaccharide Receptors/deficiency , Respiratory Syncytial Virus, Human
2.
J Exp Med ; 219(1)2022 01 03.
Article in English | MEDLINE | ID: mdl-34905019

ABSTRACT

Pathogen- and damage-associated molecular patterns are sensed by the immune system's pattern recognition receptors (PRRs) upon contact with a microbe or damaged tissue. In situations such as contact with commensals or during physiological cell death, the immune system should not respond to these patterns. Hence, immune responses need to be context dependent, but it is not clear how context for molecular pattern recognition is provided. We discuss inhibitory receptors as potential counterparts to activating pattern recognition receptors. We propose a group of inhibitory pattern recognition receptors (iPRRs) that recognize endogenous and microbial patterns associated with danger, homeostasis, or both. We propose that recognition of molecular patterns by iPRRs provides context, helps mediate tolerance to microbes, and helps balance responses to danger signals.


Subject(s)
Receptors, Pattern Recognition/physiology , Animals , Disease Susceptibility , Gene Expression Regulation , Homeostasis , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immune System/cytology , Immune System/immunology , Immune System/metabolism , Immune Tolerance , Immunity , Immunity, Innate , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Organ Specificity , Signal Transduction
3.
FASEB J ; 35(10): e21875, 2021 10.
Article in English | MEDLINE | ID: mdl-34533845

ABSTRACT

Signal inhibitory receptor on leukocytes-1 (SIRL-1) is a negative regulator of myeloid cell function and dampens antimicrobial responses. We here show that different species of the genus Staphylococcus secrete SIRL-1-engaging factors. By screening a library of single-gene transposon mutants in Staphylococcus aureus, we identified these factors as phenol-soluble modulins (PSMs). PSMs are amphipathic α-helical peptides involved in multiple aspects of staphylococcal virulence and physiology. They are cytotoxic and activate the chemotactic formyl peptide receptor 2 (FPR2) on immune cells. Human cathelicidin LL-37 is also an amphipathic α-helical peptide with antimicrobial and chemotactic activities, structurally and functionally similar to α-type PSMs. We demonstrate that α-type PSMs from multiple staphylococcal species as well as human cathelicidin LL-37 activate SIRL-1, suggesting that SIRL-1 recognizes α-helical peptides with an amphipathic arrangement of hydrophobicity, although we were not able to show direct binding to SIRL-1. Upon rational peptide design, we identified artificial peptides in which the capacity to ligate SIRL-1 is segregated from cytotoxic and FPR2-activating properties, allowing specific engagement of SIRL-1. In conclusion, we propose staphylococcal PSMs and human LL-37 as a potential new class of natural ligands for SIRL-1.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Bacterial Toxins/metabolism , Peptide Fragments/metabolism , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/metabolism , Sirtuin 1/metabolism , Staphylococcus aureus/metabolism , Humans , Quorum Sensing , Cathelicidins
4.
Eur J Immunol ; 51(9): 2210-2217, 2021 09.
Article in English | MEDLINE | ID: mdl-34145909

ABSTRACT

Signal inhibitory receptor on leukocytes-1 (SIRL-1) is an inhibitory receptor with a hitherto unknown ligand, and is expressed on human monocytes and neutrophils. SIRL-1 inhibits myeloid effector functions such as reactive oxygen species (ROS) production. In this study, we identify S100 proteins as SIRL-1 ligands. S100 proteins are composed of two calcium-binding domains. Various S100 proteins are damage-associated molecular patterns (DAMPs) released from damaged cells, after which they initiate inflammation by ligating activating receptors on immune cells. We now show that the inhibitory SIRL-1 recognizes individual calcium-binding domains of all tested S100 proteins. Blocking SIRL-1 on human neutrophils enhanced S100 protein S100A6-induced ROS production, showing that S100A6 suppresses neutrophil ROS production via SIRL-1. Taken together, SIRL-1 is an inhibitory receptor recognizing the S100 protein family of DAMPs. This may help limit tissue damage induced by activated neutrophils.


Subject(s)
Neutrophil Activation/immunology , Neutrophils/immunology , Receptors, Immunologic/immunology , S100 Proteins/immunology , Alarmins/immunology , Humans , Inflammation/immunology , Monocytes/immunology , Reactive Oxygen Species/metabolism , Receptors, Immunologic/antagonists & inhibitors , Signal Transduction/immunology
5.
Nat Rev Immunol ; 20(12): 771-780, 2020 12.
Article in English | MEDLINE | ID: mdl-32612208

ABSTRACT

The human genome encodes more than 300 potential immune inhibitory receptors. The reason for this large number of receptors remains unclear. We suggest that inhibitory receptors operate as two distinct functional categories: receptors that control the signalling threshold for immune cell activation and receptors involved in the negative feedback of immune cell activation. These two categories have characteristic receptor expression patterns: 'threshold' receptors are expressed at steady state and their expression remains high or is downregulated upon activation, whereas 'negative feedback' receptors are induced upon immune cell activation. We use mathematical models to illustrate their possible modes of operation in different scenarios for different purposes. We discuss how this categorization may impact the choice of therapeutic targets for immunotherapy of malignant, infectious and autoimmune diseases.


Subject(s)
Receptors, Immunologic/immunology , Animals , Autoimmune Diseases/immunology , Down-Regulation/immunology , Genome, Human/immunology , Humans , Signal Transduction/immunology
6.
mBio ; 10(3)2019 05 14.
Article in English | MEDLINE | ID: mdl-31088921

ABSTRACT

Staphylococcus aureus is a major cause of skin and soft tissue infections and aggravator of the inflammatory skin disease atopic dermatitis (AD [eczema]). Epicutaneous exposure to S. aureus induces Th17 responses through skin Langerhans cells (LCs), which paradoxically contribute to host defense but also to AD pathogenesis. The molecular mechanisms underlying the interaction between S. aureus and LCs are poorly understood. Here we demonstrate that human LCs directly interact with S. aureus through the pattern recognition receptor langerin (CD207). Human, but not mouse, langerin interacts with S. aureus through the conserved ß-N-acetylglucosamine (GlcNAc) modifications on wall teichoic acid (WTA), thereby discriminating S. aureus from other staphylococcal species. Importantly, the specific S. aureus WTA glycoprofile strongly influences the level of proinflammatory cytokines that are produced by in vitro-generated LCs. Finally, in a murine epicutaneous infection model, S. aureus strongly upregulated transcripts of Cxcl1, Il6, and Il17, which required the presence of both human langerin and WTA ß-GlcNAc. Our findings provide molecular insight into the unique proinflammatory capacities of S. aureus in relation to skin inflammation.IMPORTANCE The bacterium Staphylococcus aureus is an important cause of skin infections and is also associated with the occurrence and severity of eczema. Langerhans cells (LCs), a specific subset of skin immune cells, participate in the immune response to S. aureus, but it is yet unclear how LCs recognize S. aureus Therefore, we investigated the molecular mechanism underlying the interaction between LCs and S. aureus We identified that wall teichoic acid, an abundant polymer on the S. aureus surface, is recognized by langerin, a receptor unique to LCs. This interaction allows LCs to discriminate S. aureus from other related staphylococcal species and initiates a proinflammatory response similar to that observed in patients with eczema. Our data therefore provide important new insights into the relationship between S. aureus, LCs, and eczema.


Subject(s)
Antigens, CD/genetics , Antigens, Surface/genetics , Langerhans Cells/immunology , Lectins, C-Type/genetics , Mannose-Binding Lectins/genetics , Staphylococcal Infections/immunology , Teichoic Acids/immunology , Acetylglucosamine , Animals , Antigens, CD/immunology , Antigens, Surface/immunology , Cells, Cultured , Cytokines/genetics , Cytokines/immunology , Humans , Inflammation , Interleukin-17/genetics , Interleukin-17/immunology , Lectins, C-Type/immunology , Mannose-Binding Lectins/immunology , Mice , Mice, Inbred C57BL , Skin/immunology , Skin/microbiology , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...