Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cell Death Dis ; 5: e1223, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24810059

ABSTRACT

Glioblastoma (GBM) is the most common and deadly adult brain tumor. Despite aggressive surgery, radiation, and chemotherapy, the life expectancy of patients diagnosed with GBM is ∼14 months. The extremely aggressive nature of GBM results from glioblastoma stem-like cells (GSCs) that sustain GBM growth, survive intensive chemotherapy, and give rise to tumor recurrence. There is accumulating evidence revealing that GSC resilience is because of concomitant activation of multiple survival pathways. In order to decode the signal transduction networks responsible for the malignant properties of GSCs, we analyzed a collection of GSC lines using a dual, but complementary, experimental approach, that is, reverse-phase protein microarrays (RPPMs) and kinase inhibitor library screening. We treated GSCs in vitro with clinically relevant concentrations of temozolomide (TMZ) and performed RPPM to detect changes in phosphorylation patterns that could be associated with resistance. In addition, we screened GSCs in vitro with a library of protein and lipid kinase inhibitors to identify specific targets involved in GSC survival and proliferation. We show that GSCs are relatively insensitive to TMZ treatment in terms of pathway activation and, although displaying heterogeneous individual phospho-proteomic profiles, most GSCs are resistant to specific inhibition of the major signaling pathways involved in cell survival and proliferation. However, simultaneous multipathway inhibition by the staurosporin derivative UCN-01 results in remarkable inhibition of GSC growth in vitro. The activity of UCN-01 on GSCs was confirmed in two in vivo models of GBM growth. Finally, we used RPPM to study the molecular and functional effects of UCN-01 and demonstrated that the sensitivity to UCN-01 correlates with activation of survival signals mediated by PDK1 and the DNA damage response initiated by CHK1. Taken together, our results suggest that a combined inhibition of PDK1 and CHK1 represents a potentially effective therapeutic approach to reduce the growth of human GBM.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Neoplastic Stem Cells/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Cell Death/drug effects , Cell Line, Tumor , Checkpoint Kinase 1 , Dacarbazine/analogs & derivatives , Dacarbazine/pharmacology , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Glioblastoma/enzymology , Glioblastoma/pathology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Targeted Therapy , Neoplastic Stem Cells/enzymology , Neoplastic Stem Cells/pathology , Protein Array Analysis , Protein Serine-Threonine Kinases/metabolism , Proteomics/methods , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Signal Transduction/drug effects , Small Molecule Libraries , Staurosporine/analogs & derivatives , Staurosporine/pharmacology , Temozolomide , Time Factors , Tumor Burden/drug effects , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Oncogene ; 32(40): 4806-13, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23128394

ABSTRACT

MicroRNAs (miRNAs) from the gene cluster miR-143-145 are diminished in cells of colorectal tumor origin when compared with normal colon epithelia. Until now, no report has addressed the coordinate action of these miRNAs in colorectal cancer (CRC). In this study, we performed a comprehensive molecular and functional analysis of the miRNA cluster regulatory network. First, we evaluated proliferation, migration, anchorage-independent growth and chemoresistance in the colon tumor cell lines after miR-143 and miR-145 restoration. Then, we assessed the contribution of single genes targeted by miR-143 and miR-145 by reinforcing their expression and checking functional recovery. Restoring miR-143 and miR-145 in colon cancer cells decreases proliferation, migration and chemoresistance. We identified cluster of differentiation 44 (CD44), Kruppel-like factor 5 (KLF5), Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) and v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) as proteins targeted by miR-143 and miR-145. Their re-expression can partially revert a decrease in transformation properties caused by the overexpression of miR-143 and miR-145. In addition, we determined a set of mRNAs that are diminished after reinforcing miR-143 and miR-145 expression. The whole transcriptome analysis ascertained that downregulated transcripts are enriched in predicted target genes in a statistically significant manner. A number of additional genes, whose expression decreases as a direct or indirect consequence of miR-143 and miR-145, reveals a complex regulatory network that affects cell signaling pathways involved in transformation. In conclusion, we identified a coordinated program of gene repression by miR-143 and miR-145, in CRC, where either of the two miRNAs share a target transcript, or where the target transcripts share a common signaling pathway. Major mediators of the oncosuppression by miR-143 and miR-145 are genes belonging to the growth factor receptor-mitogen-activated protein kinase network and to the p53 signaling pathway.


Subject(s)
Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/physiology , Oncogenes , Animals , Cell Division/genetics , Cell Line, Tumor , Colorectal Neoplasms/pathology , Gene Regulatory Networks , Humans , Mice , Real-Time Polymerase Chain Reaction , Transcriptome , Xenograft Model Antitumor Assays
3.
Minerva Anestesiol ; 56(4): 113-6, 1990 Apr.
Article in Italian | MEDLINE | ID: mdl-2215993

ABSTRACT

We studied 96 patients undergoing short gynecological procedures. Anaesthesia has been induced with fentanyl 1.5 micrograms/kg (45 patients) or alfentanil micrograms /kg (51 patients) and a hypnotic dose of propofol, and maintained with 70% N2O via facial mask. We observed a better and more rapid control of surgical analgesia with alfentanil, and an earlier recovery of postoperative psychophysical functions. Post-induction apnea has been more frequent and prolonged in the alfentanil group, but no difference in the time necessary to recover an adequate ventilation has been observed between the two groups. Alfentanil anaesthesia determined a more marked intraoperative bradycardia. By virtue of the speed of onset and the short duration of action, alfentanil is a suitable anaesthetic agent for short surgical procedures, particularly in day-stay patients.


Subject(s)
Alfentanil , Anesthesia , Fentanyl , Propofol , Adult , Drug Combinations , Female , Humans , Male , Middle Aged , Minor Surgical Procedures
SELECTION OF CITATIONS
SEARCH DETAIL
...