Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Opt Lett ; 46(9): 2039-2042, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33929413

ABSTRACT

We report a seeded optical parametric generator (OPG) producing tunable radiation from 4.2-4.6 µm. The seeded OPG employs a 13 mm long CdSiP2 (CSP) crystal cut for non-critical phase-matching, pumped by a nanosecond-pulsed, MHz repetition rate Raman fiber amplifier system at 1.24 µm. A filtered, continuous-wave fiber supercontinuum source at 1.72 µm is used as the seed. The source generates up to 0.25 W of mid-infrared (MIR) idler power with a total pump conversion of 42% (combined signal and idler).

2.
Opt Lett ; 44(24): 6025-6028, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-32628210

ABSTRACT

We demonstrate a nanosecond pulsed source at 620 nm with watt-level average power by frequency-doubling a 1240 nm phosphosilicate Raman fiber amplifier. A gain-switched laser diode operating at 1064 nm is amplified in an ytterbium fiber master oscillator power amplifier system and then converted to 1240 nm using a phosphosilicate Raman fiber amplifier with a conversion efficiency of up to 66%. The Raman fiber amplifier is seeded with a continuous-wave 1240 nm laser diode to obtain narrow-linewidth radiation, which is subsequently frequency-doubled in a periodically poled lithium tantalate crystal. A maximum average power of 1.5 W is generated at 620 nm, corresponding to a pulse energy of 300 nJ at a repetition rate of 5 MHz. The source has excellent beam quality (M2≤1.16) and an optical efficiency (1064 nm to 620 nm) of 20%, demonstrating an effective architecture for generating red pulsed light for biomedical imaging applications.

3.
Opt Express ; 26(4): 4440-4447, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29475294

ABSTRACT

We demonstrate a nanosecond 560 nm pulse source based on frequency-doubling the output of a combined Yb-Raman fiber amplifier, achieving a pulse energy of 2.0 µJ with a conversion efficiency of 32% from the 976 nm pump light. By introducing a continuous-wave 1120 nm signal before the cladding pumped amplifier of a pulsed Yb:fiber master oscillator power amplifier system operating at 1064 nm, efficient conversion to 1120 nm occurs within the fiber amplifier due to stimulated Raman scattering. The output of the combined Yb-Raman amplifier is frequency-doubled to 560 nm using a periodically poled lithium tantalate crystal with a conversion efficiency of 47%, resulting in an average power of 3.0 W at a repetition rate of 1.5 MHz. The 560 nm pulse duration of 1.7 ns and the near diffraction-limited beam quality (M2≤1.18) make this source ideally suited to biomedical imaging applications such as optical-resolution photoacoustic microscopy and stimulated emission depletion microscopy.

4.
Opt Express ; 25(6): 6421-6430, 2017 Mar 20.
Article in English | MEDLINE | ID: mdl-28380992

ABSTRACT

We present results of high average power mid-infrared (mid-IR) generation employing synchronized nanosecond pulsed ytterbium and erbium fiber amplifier systems using periodically poled lithium niobate. We generate greater than 6 W of mid-IR radiation tunable in wavelength between 3.31-3.48 µm, at power conversion efficiencies exceeding 75%, with near diffraction limited beam quality (M2 = 1.4). Numerical modeling is used to verify the experimental results in differing pump depletion regimes.

5.
Opt Lett ; 41(11): 2446-9, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27244385

ABSTRACT

We report the development of a high average power, picosecond-pulse, mid-infrared source based on difference-frequency generation (DFG) of two synchronous master oscillator power fiber amplifier systems. The generated idler can be tuned over the range 3.28-3.45 µm delivering greater than 3.4 W of average power, with a maximum pump to total DFG power conversion efficiency of 78%. The benefits of a synchronously pumped scheme, compared to CW seeding of DFG sources, are discussed.

6.
Opt Express ; 23(15): 20051-61, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26367663

ABSTRACT

We fabricate a free-standing molybdenum diselenide (MoSe2) saturable absorber by embedding liquid-phase exfoliated few-layer MoSe2 flakes into a polymer film. The MoSe2-polymer composite is used to Q-switch fiber lasers based on ytterbium (Yb), erbium (Er) and thulium (Tm) gain fiber, producing trains of microsecond-duration pulses with kilohertz repetition rates at 1060 nm, 1566 nm and 1924 nm, respectively. Such operating wavelengths correspond to sub-bandgap saturable absorption in MoSe2, which is explained in the context of edge-states, building upon studies of other semiconducting transition metal dichalcogenide (TMD)-based saturable absorbers. Our work adds few-layer MoSe2 to the growing catalog of TMDs with remarkable optical properties, which offer new opportunities for photonic devices.

7.
Opt Lett ; 40(13): 3085-8, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26125373

ABSTRACT

A pulse source at 560 nm that is tunable in duration between 50 ps and 2.7 ns with >1 W of average power and near diffraction-limited beam quality is demonstrated. The source is based on efficient (up to 50%) second-harmonic generation in a periodically poled lithium tantalate crystal of a linearly polarized fiber-integrated Raman amplifier operating at 1120 nm. A duration-tunable ytterbium master-oscillator power-fiber amplifier is used to pulse-pump the Raman amplifier, which is seeded by a continuous-wave distributed-feedback laser diode at 1120 nm. The performance of the system using two different master oscillator schemes is compared. A pulse energy of up to 765 nJ is achieved with a conversion efficiency of 25% from the ytterbium fiber pump, demonstrating a compact and turn-key architecture for obtaining high peak-power radiation at 560 nm.


Subject(s)
Optical Imaging/methods , Lasers , Optical Fibers , Optical Imaging/instrumentation , Time Factors
8.
Opt Express ; 23(12): 15728-33, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26193551

ABSTRACT

We report the development of a fiber-integrated picosecond source at 560 nm by second harmonic generation of a Raman fiber laser. A picosecond ytterbium master oscillator power fiber amplifier is used to pulse-pump a Raman amplifier, which is seeded by a continuous wave distributed feedback laser diode operating at 1120 nm. The pulse train generated at 1120 nm is frequency-doubled in a fiber-coupled periodically-poled lithium niobate crystal module, producing 450 mW of average power at 560 nm with a pulse duration of 150 ps at a repetition rate of 47.5 MHz. The near diffraction-limited (M(2) = 1.02) collimated output beam is ideal for super-resolution microscopy applications.

9.
Opt Lett ; 40(3): 387-90, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25680054

ABSTRACT

We demonstrate that the giant chirp of coherent, nanosecond pulses generated in an 846 m long, all-normal dispersion, nanotube mode-locked fiber laser can be compensated using a chirped fiber Bragg grating compressor. Linear compression to 11 ps is reported, corresponding to an extreme compression factor of ∼100. Experimental results are supported by numerical modeling, which is also used to probe the limits of this technique. Our results unequivocally conclude that ultra-long cavity fiber lasers can support stable dissipative soliton attractors and highlight the design simplicity for pulse-energy scaling through cavity elongation.

10.
Opt Express ; 22(24): 29726-32, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25606903

ABSTRACT

We report the development of a fully fiber-integrated pulsed master oscillator power fibre amplifier (MOPFA) source at 780 nm, producing 3.5 W of average power with 410 ps pulses at a repetition rate of 50 MHz. The source consists of an intensity modulated 1560 nm laser diode amplified in an erbium fiber amplifier chain, followed by a fiber coupled periodically poled lithium niobate crystal module for frequency doubling. The source is then used for generating visible light through four-wave mixing in a length of highly nonlinear photonic crystal fiber: 105 mW at 668 nm and 95 mW at 662 nm are obtained, with pump to anti-Stokes conversion slope efficiencies exceeding 6% in both cases.


Subject(s)
Light , Optical Fibers , Amplifiers, Electronic , Crystallization , Microscopy, Electron, Scanning , Niobium/chemistry , Oxides/chemistry , Photons , Spectrum Analysis
11.
Opt Express ; 21(20): 23261-71, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24104240

ABSTRACT

We demonstrate a mid-infrared Raman-soliton continuum extending from 1.9 to 3 µm in a highly germanium-doped silica-clad fiber, pumped by a nanotube mode-locked thulium-doped fiber system, delivering 12 kW sub-picosecond pulses at 1.95 µm. This simple and robust source of light covers a portion of the atmospheric transmission window.

SELECTION OF CITATIONS
SEARCH DETAIL
...