Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 244: 107956, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061114

ABSTRACT

BACKGROUND AND OBJECTIVE: Cerebral vascular diseases are among the most burdensome diseases faced by society. However, investigating the pathophysiology of diseases as well as developing future treatments still relies heavily on expensive in-vivo and in-vitro studies. The generation of realistic, patient-specific models of the cerebrovascular system capable of simulating hemodynamics and perfusion promises the ability to simulate diseased states, therefore accelerating development cycles using in silico studies and opening opportunities for the individual assessment of diseased states, treatment planning, and the prediction of outcomes. By providing a patient-specific, anatomically detailed and validated model of the human cerebral vascular system, we aim to provide the basis for future in silico investigations of the cerebral physiology and pathology. METHODS: In this retrospective study, a processing pipeline for patient-specific quantification of cerebral perfusion was developed and applied to healthy individuals and a stroke patient. Major arteries are segmented from 3T MR angiography data. A synthetic tree generation algorithm titled tissue-growth based optimization (GBO)1 is used to extend vascular trees beyond the imaging resolution. To investigate the anatomical accuracy of the generated trees, morphological parameters are compared against those of 7 T MRI, 9.4 T MRI, and dissection data. Using the generated vessel model, hemodynamics and perfusion are simulated by solving one-dimensional blood flow equations combined with Darcy flow equations. RESULTS: Morphological data of three healthy individuals (mean age 47 years ± 15.9 [SD], 2 female) was analyzed. Bifurcation and physiological characteristics of the synthetically generated vessels are comparable to those of dissection data. The inability of MRI based segmentation to resolve small branches and the small volume investigated cause a mismatch in the comparison to MRI data. Cerebral perfusion was estimated for healthy individuals and a stroke patient. The simulated perfusion is compared against Arterial-Spin-Labeling MRI perfusion data. Good qualitative agreement is found between simulated and measured cerebral blood flow (CBF)2. Ischemic regions are predicted well, however ischemia severity is overestimated. CONCLUSIONS: GBO successfully generates detailed cerebral vascular models with realistic morphological parameters. Simulations based on the resulting networks predict perfusion territories and ischemic regions successfully.


Subject(s)
Magnetic Resonance Imaging , Stroke , Humans , Middle Aged , Retrospective Studies , Magnetic Resonance Imaging/methods , Magnetic Resonance Angiography/methods , Stroke/diagnostic imaging , Perfusion , Cerebrovascular Circulation/physiology
2.
J Biomech Eng ; 145(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37525577

ABSTRACT

Abdominal aortic aneurysm can exhibit transitional flow characteristics in laminar flow regimes. To report transitional flow characteristics, we examined the convergence of phase-averaged solutions by executing blood flow simulations of a patient-specific abdominal aortic aneurysmal model for 257 cardiac cycles with periodic, pulsatile boundary conditions. The phase-averaged solutions were computed by averaging the solutions over various numbers of cardiac cycles and compared against the ones averaged over 124 cycles. The phase-averaged solutions reported small differences when they were averaged over a large number of cardiac cycles. The instantaneous solutions, however, failed to exhibit fluctuations reported in the phase-averaged solutions. To study transitional blood flows in the aneurysmal region, we need to report phase-averaged solutions as they exhibit nonperiodic, disturbed flow characteristics. Additionally, when reporting phase-averaged solutions, it is preferred to compute an average over a large number of cardiac cycles to be able to represent flow structures of the converged phase-averaged solutions.


Subject(s)
Aortic Aneurysm, Abdominal , Humans , Hemodynamics , Models, Cardiovascular , Blood Flow Velocity , Pulsatile Flow
3.
Biomech Model Mechanobiol ; 22(3): 1095-1112, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36869925

ABSTRACT

Biological tissues receive oxygen and nutrients from blood vessels by developing an indispensable supply and demand relationship with the blood vessels. We implemented a synthetic tree generation algorithm by considering the interactions between the tissues and blood vessels. We first segment major arteries using medical image data and synthetic trees are generated originating from these segmented arteries. They grow into extensive networks of small vessels to fill the supplied tissues and satisfy the metabolic demand of them. Further, the algorithm is optimized to be executed in parallel without affecting the generated tree volumes. The generated vascular trees are used to simulate blood perfusion in the tissues by performing multiscale blood flow simulations. One-dimensional blood flow equations were used to solve for blood flow and pressure in the generated vascular trees and Darcy flow equations were solved for blood perfusion in the tissues using a porous model assumption. Both equations are coupled at terminal segments explicitly. The proposed methods were applied to idealized models with different tree resolutions and metabolic demands for validation. The methods demonstrated that realistic synthetic trees were generated with significantly less computational expense compared to that of a constrained constructive optimization method. The methods were then applied to cerebrovascular arteries supplying a human brain and coronary arteries supplying the left and right ventricles to demonstrate the capabilities of the proposed methods. The proposed methods can be utilized to quantify tissue perfusion and predict areas prone to ischemia in patient-specific geometries.


Subject(s)
Algorithms , Blood Circulation , Computer Simulation , Blood Vessels , Humans , Animals , Brain/blood supply , Coronary Vessels/physiology , Cerebral Arteries/physiology , Datasets as Topic , Biomechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...