Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 103(22): 227201, 2009 Nov 27.
Article in English | MEDLINE | ID: mdl-20366122

ABSTRACT

An outstanding question regarding the probing or possible device applications of correlated electronic materials (CEMs) with layered structure is the extent to which their bulk and surface properties differ or not. The broken translational symmetry at the surface can lead to distinct functionality due to the charge, lattice, orbital, and spin coupling. Here we report on the case of bilayered manganites with hole doping levels corresponding to bulk ferromagnetic order. We find that, although the hole doping level is measured to be the same as in the bulk, the surface layer is not ferromagnetic. Further, our low-energy electron diffraction and x-ray measurements show that there is a c-axis collapse in the outermost layer. Bulk theoretical calculations reveal that, even at fixed doping level, the relaxation of the Jahn-Teller distortion at the surface is consistent with the stabilization of an A-type antiferromagnetic state.

2.
Phys Rev Lett ; 100(6): 066102, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18352491

ABSTRACT

The surface structural phases of Ca(2-x)SrxRuO4 are investigated using quantitative low energy electron diffraction. The broken symmetry at the surface enhances the structural instability against the RuO6 rotational distortion while diminishing the instability against the RuO6 tilt distortion occurring within the bulk crystal. As a result, suppressed structural and electronic surface phase transition temperatures are observed, including the appearance of an inherent Mott metal-to-insulator transition for x=0.1 and possible modifications of the surface quantum critical point near x(c) approximately 0.5.

8.
SELECTION OF CITATIONS
SEARCH DETAIL
...