Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Xray Sci Technol ; 26(5): 707-726, 2018.
Article in English | MEDLINE | ID: mdl-29991154

ABSTRACT

BACKGROUND: X-ray CT/micro-CT methods with photon-counting detectors (PCDs) and high Z materials are a hot research topic. One method using PCDs allows for spectral imaging in 5 energy windows while conventional X-ray detectors only collect energy-integrating data. OBJECTIVE: To demonstrate the enhanced separation of contrast materials by using PCDs, multivariate analysis, and linear discriminant methods. METHODS: Phantoms containing iodine and aqueous nanomaterials were scanned on a MARS spectral micro-CT. Image volumes were segmented into separate material-specific populations. Contrast comparisons were made by calculating T2 test statistics in the univariate, pseudo-conventional and multivariate, spectral CT data sets. Separability after Fisher discriminant analysis (FDA) was also assessed. RESULTS: The T2 values calculated for material comparisons increased as a result of the spectral expansion. The majority of the tested contrast agents showed increased T2 values by a factor of ∼2 -3. The total significant T2 statistics in the pure and mixed lanthanide image sets increased in the spectral data set. CONCLUSION: This work consolidates the groundwork for photon-counting-based material decomposition with micro-CT, facilitating future development of novel nanomaterials and their preclinical applications.


Subject(s)
Nanoparticles/chemistry , X-Ray Microtomography/instrumentation , X-Ray Microtomography/methods , Algorithms , Contrast Media , Equipment Design , Iodine , Phantoms, Imaging , Photons
2.
J Med Imaging (Bellingham) ; 5(4): 043503, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30840738

ABSTRACT

We assess the performance of a cadmium zinc telluride (CZT)-based Medipix3RX energy-resolving and photon-counting x-ray detector as a candidate for spectral microcomputed tomography (micro-CT) imaging. It features an array of 128 × 128 , 110 - µ m 2 pixels, each with four simultaneous threshold counters that utilize real-time charge summing. Each pixel's response is assessed by imaging with a range of incident x-ray intensities and detector integration times. Energy-related assessments are made by exposing the detector to the emission from an I-125 radioisotope brachytherapy seed. Long-term stability is assessed by repeating identical exposures over the course of 1 h. The high yield of properly functioning pixels (98.8%), long-term stability (linear regression of whole-chip response over 1 h of acquisitions: y = - 0.0038 x + 2284 ; standard deviation: 3.7 counts), and energy resolution [2.5 keV full-width half-maximum (FWHM) (single pixel), 3.7 keV FWHM (across the full image)] make this device suitable for spectral micro-CT.

3.
Proc SPIE Int Soc Opt Eng ; 99692016 Aug 28.
Article in English | MEDLINE | ID: mdl-27795606

ABSTRACT

We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = -0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...