Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Front Immunol ; 15: 1293723, 2024.
Article in English | MEDLINE | ID: mdl-38690263

ABSTRACT

T cells must adapt to variations in tissue microenvironments; these adaptations include the degree of oxygen availability. The hypoxia-inducible factor (HIF) transcription factors control much of this adaptation, and thus regulate many aspects of T cell activation and function. The HIFs are in turn regulated by oxygen-dependent hydroxylases: both the prolyl hydroxylases (PHDs) which interact with the VHL tumour suppressor and control HIF turnover, and the asparaginyl hydroxylase known as the Factor inhibiting HIF (FIH), which modulates HIF transcriptional activity. To determine the role of this latter factor in T cell function, we generated T cell-specific FIH knockout mice. We found that FIH regulates T cell fate and function in a HIF-dependent manner and show that the effects of FIH activity occur predominantly at physiological oxygen concentrations. T cell-specific loss of FIH boosts T cell cytotoxicity, augments T cell expansion in vivo, and improves anti-tumour immunotherapy in mice. Specifically inhibiting FIH in T cells may therefore represent a promising strategy for cancer immunotherapy.


Subject(s)
Cell Differentiation , Mice, Knockout , Animals , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Lymphocyte Activation/immunology , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Mice, Inbred C57BL
2.
Front Physiol ; 15: 1347347, 2024.
Article in English | MEDLINE | ID: mdl-38725573

ABSTRACT

Introduction: The possible beneficial effects of physical activity during doxorubicin treatment of breast cancer need further investigation as many of the existing studies have been done on non-tumor-bearing models. Therefore, in this study, we aim to assess whether short-term voluntary wheel-running exercise during doxorubicin treatment of breast cancer-bearing mice could induce beneficial cardiac effects and enhance chemotherapy efficacy. Methods: Murine breast cancer I3TC cells were inoculated subcutaneously to the flank of female FVB mice (n = 16) that were divided into exercised and non-exercised groups. Two weeks later, doxorubicin treatment was started via intraperitoneal administration (5 mg/kg weekly for 3 weeks). Organs were harvested a day after the last dose. Results: The tumor volume over time was significantly different between the groups, with the exercising group having lower tumor volumes. The exercised group had increased body weight gain, tumor apoptosis, capillaries per cardiomyocytes, and cardiac lactate dehydrogenase activity compared to the unexercised group, but tumor blood vessel density and maturation and tumor and cardiac HIF1-α and VEGF-A levels did not differ from those of the non-exercised group. Discussion: We conclude that even short-term light exercise such as voluntary wheel running exercise can decrease the subcutaneous mammary tumor growth, possibly via increased tumor apoptosis. The increase in cardiac capillaries per cardiomyocytes may also have positive effects on cancer treatment outcomes.

3.
JAMA Netw Open ; 7(4): e244386, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38573638

ABSTRACT

Importance: Many patients with post-COVID condition (PCC) experience persistent fatigue, muscle pain, and cognitive problems that worsen after exertion (referred to as postexertional malaise). Recommendations currently advise against exercise in this population to prevent symptom worsening; however, prolonged inactivity is associated with risk of long-term health deterioration. Objective: To assess postexertional symptoms in patients with PCC after exercise compared with control participants and to comprehensively investigate the physiologic mechanisms underlying PCC. Design, Setting, and Participants: In this randomized crossover clinical trial, nonhospitalized patients without concomitant diseases and with persistent (≥3 months) symptoms, including postexertional malaise, after SARS-CoV-2 infection were recruited in Sweden from September 2022 to July 2023. Age- and sex-matched control participants were also recruited. Interventions: After comprehensive physiologic characterization, participants completed 3 exercise trials (high-intensity interval training [HIIT], moderate-intensity continuous training [MICT], and strength training [ST]) in a randomized order. Symptoms were reported at baseline, immediately after exercise, and 48 hours after exercise. Main Outcomes and Measures: The primary outcome was between-group differences in changes in fatigue symptoms from baseline to 48 hours after exercise, assessed via the visual analog scale (VAS). Questionnaires, cardiopulmonary exercise testing, inflammatory markers, and physiologic characterization provided information on the physiologic function of patients with PCC. Results: Thirty-one patients with PCC (mean [SD] age, 46.6 [10.0] years; 24 [77%] women) and 31 healthy control participants (mean [SD] age, 47.3 [8.9] years; 23 [74%] women) were included. Patients with PCC reported more symptoms than controls at all time points. However, there was no difference between the groups in the worsening of fatigue in response to the different exercises (mean [SD] VAS ranks for HIIT: PCC, 29.3 [19.5]; controls, 28.7 [11.4]; P = .08; MICT: PCC, 31.2 [17.0]; controls, 24.6 [11.7]; P = .09; ST: PCC, 31.0 [19.7]; controls, 28.1 [12.2]; P = .49). Patients with PCC had greater exacerbation of muscle pain after HIIT (mean [SD] VAS ranks, 33.4 [17.7] vs 25.0 [11.3]; P = .04) and reported more concentration difficulties after MICT (mean [SD] VAS ranks, 33.0 [17.1] vs 23.3 [10.6]; P = .03) compared with controls. At baseline, patients with PCC showed preserved lung and heart function but had a 21% lower peak volume of oxygen consumption (mean difference: -6.8 mL/kg/min; 95% CI, -10.7 to -2.9 mL/kg/min; P < .001) and less isometric knee extension muscle strength (mean difference: -37 Nm; 95% CI, -67 to -7 Nm; P = .02) compared with controls. Patients with PCC spent 43% less time on moderate to vigorous physical activity (mean difference, -26.5 minutes/d; 95% CI, -42.0 to -11.1 minutes/d; P = .001). Of note, 4 patients with PCC (13%) had postural orthostatic tachycardia, and 18 of 29 (62%) showed signs of myopathy as determined by neurophysiologic testing. Conclusions and Relevance: In this study, nonhospitalized patients with PCC generally tolerated exercise with preserved cardiovascular function but showed lower aerobic capacity and less muscle strength than the control group. They also showed signs of postural orthostatic tachycardia and myopathy. The findings suggest cautious exercise adoption could be recommended to prevent further skeletal muscle deconditioning and health impairment in patients with PCC. Trial Registration: ClinicalTrials.gov Identifier: NCT05445830.


Subject(s)
COVID-19 , Female , Humans , Male , Middle Aged , Fatigue/etiology , Myalgia/etiology , SARS-CoV-2 , Tachycardia , Adult , Cross-Over Studies
4.
Br J Sports Med ; 58(7): 366-372, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38290798

ABSTRACT

OBJECTIVES: To examine the associations between changes in cardiorespiratory fitness (CRF) in adulthood and prostate cancer incidence and mortality. METHODS: In this prospective study, men who completed an occupational health profile assessment including at least two valid submaximal CRF tests, performed on a cycle ergometer, were included in the study. Data on prostate cancer incidence and mortality were derived from national registers. HRs and CIs were calculated using Cox proportional hazard regression with inverse probability treatment weights of time-varying covariates. RESULTS: During a mean follow-up time of 6.7 years (SD 4.9), 592 (1%) of the 57 652 men were diagnosed with prostate cancer, and 46 (0.08%) died with prostate cancer as the primary cause of death. An increase in absolute CRF (as % of L/min) was associated with a reduced risk of prostate cancer incidence (HR 0.98, 95% CI 0.96 to 0.99) but not mortality, in the fully adjusted model. When participants were grouped as having increased (+3%), stable (±3%) or decreased (-3%) CRF, those with increased fitness also had a reduced risk of prostate cancer incidence compared with those with decreased fitness (HR 0.65, 95% CI 0.49 to 0.86), in the fully adjusted model. CONCLUSION: In this study of employed Swedish men, change in CRF was inversely associated with risk of prostate cancer incidence, but not mortality. Change in CRF appears to be important for reducing the risk of prostate cancer.


Subject(s)
Cardiorespiratory Fitness , Prostatic Neoplasms , Male , Humans , Prospective Studies , Incidence , Sweden/epidemiology , Risk Factors , Prostatic Neoplasms/epidemiology , Exercise Test , Physical Fitness
5.
NPJ Microgravity ; 9(1): 40, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37286567

ABSTRACT

The skeletal muscle and the immune system are heavily affected by the space environment. The crosstalk between these organs, although established, is not fully understood. This study determined the nature of immune cell changes in the murine skeletal muscle following (hindlimb) unloading combined with an acute session of irradiation (HLUR). Our findings show that 14 days of HLUR induces a significant increase of myeloid immune cell infiltration in skeletal muscle.

6.
JAMA Netw Open ; 6(6): e2321102, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37382952

ABSTRACT

Importance: Cardiorespiratory fitness (CRF) levels appear to be an important risk factor for cancer incidence and death. Objectives: To examine CRF and prostate, colon, and lung cancer incidence and mortality in Swedish men, and to assess whether age moderated any associations between CRF and cancer. Design, Setting, and Participants: A prospective cohort study was conducted in a population of men who completed an occupational health profile assessment between October 1982 and December 2019 in Sweden. Data analysis was performed from June 22, 2022, to May 11, 2023. Exposure: Cardiorespiratory fitness was assessed as maximal oxygen consumption, estimated using a submaximal cycle ergometer test. Main Outcomes and Measures: Data on prostate, colon, and lung cancer incidence and mortality were derived from national registers. Hazard ratios (HRs) and 95% CIs were calculated using Cox proportional hazards regression. Results: Data on 177 709 men (age range, 18-75 years; mean [SD] age, 42 [11] years; mean [SD] body mass index, 26 [3.8]) were analyzed. During a mean (SD) follow-up time of 9.6 (5.5) years, a total of 499 incident cases of colon, 283 of lung, and 1918 of prostate cancer occurred, as well as 152 deaths due to colon cancer, 207 due to lung cancer, and 141 deaths due to prostate cancer. Higher levels of CRF (maximal oxygen consumption as milliliters per minute per kilogram) were associated with a significantly lower risk of colon (HR, 0.98, 95% CI, 0.96-0.98) and lung cancer (HR, 0.98; 95% CI, 0.96-0.99) incidence, and a higher risk of prostate cancer incidence (HR, 1.01; 95% CI, 1.00-1.01). Higher CRF was associated with a lower risk of death due to colon (HR, 0.98; 95% CI, 0.96-1.00), lung (HR, 0.97; 95% CI, 0.95-0.99), and prostate (HR, 0.95; 95% CI, 0.93-0.97) cancer. After stratification into 4 groups and in fully adjusted models, the associations remained for moderate (>35-45 mL/min/kg), 0.72 (0.53-0.96) and high (>45 mL/min/kg), 0.63 (0.41-0.98) levels of CRF, compared with very low (<25 mL/min/kg) CRF for colon cancer incidence. For prostate cancer mortality, associations remained for low (HR, 0.67; 95% CI, 0.45-1.00), moderate (HR, 0.57; 95% CI, 0.34-0.97), and high (HR, 0.29; 95% CI, 0.10-0.86) CRF. For lung cancer mortality, only high CRF (HR, 0.41; 95% CI, 0.17-0.99) was significant. Age modified the associations for lung (HR, 0.99; 95% CI, 0.99-0.99) and prostate (HR, 1.00; 95% CI, 1.00-1.00; P < .001) cancer incidence, and for death due to lung cancer (HR, 0.99; 95% CI, 0.99-0.99; P = .04). Conclusions and Relevance: In this cohort of Swedish men, moderate and high CRF were associated with a lower risk of colon cancer. Low, moderate, and high CRF were associated with lower risk of death due to prostate cancer, while only high CRF was associated with lower risk of death due to lung cancer. If evidence for causality is established, interventions to improve CRF in individuals with low CRF should be prioritized.


Subject(s)
Cardiorespiratory Fitness , Colonic Neoplasms , Lung Neoplasms , Prostatic Neoplasms , Male , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Sweden/epidemiology , Incidence , Prospective Studies , Prostatic Neoplasms/epidemiology , Lung Neoplasms/epidemiology , Colonic Neoplasms/epidemiology , Lung
7.
Sci Rep ; 13(1): 6561, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085562

ABSTRACT

The role of exercise in cancer prevention and control is increasingly recognized, and based on preclinical studies, it is hypothesized that mobilization of leukocytes plays an important role in the anti-tumor effect. Thus, we examined how 10-min acute exercise modulates immune cells in newly diagnosed breast cancer patients. Blood samples were taken at rest, immediately after exercise and 30 min after exercise and phenotypic characterization of major leukocyte subsets was done using 9-color flow cytometry. Total leukocyte count increased by 29%, CD8+ T cell count by 34%, CD19+ B cell count by 18%, CD56+CD16+ NK cell count by 130%, and CD14+CD16+ monocyte count by 51% immediately after acute exercise. Mobilization of CD45+, CD8+, CD19+, and CD56+CD16+ cells correlated positively with exercising systolic blood pressure, heart rate percentage of age predicted maximal heart rate, rate pressure product, and mean arterial pressure. Our findings indicate that a single bout of acute exercise of only 10 min can cause leukocytosis in breast cancer patients. Mobilization of leukocytes appear to be directly related to the intensity of exercise. It is possible that the positive effect of exercise on oncologic outcome might be partly due to immune cell mobilization as documented in the present study.


Subject(s)
Breast Neoplasms , Humans , Female , Leukocytes , Leukocyte Count , Killer Cells, Natural , Exercise/physiology
8.
BMJ Open ; 13(3): e071304, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36882246

ABSTRACT

INTRODUCTION: Radical cystectomy (RC) is the standard treatment for patients with non-metastatic muscle-invasive bladder cancer, as well as for patients with therapy refractory high-risk non-muscle invasive bladder cancer. However, 50-65% of patients undergoing RC experience perioperative complications. The risk, severity and impact of these complications is associated with a patient's preoperative cardiorespiratory fitness, nutritional and smoking status and presence of anxiety and depression. There is emerging evidence supporting multimodal prehabilitation as a strategy to reduce the risk of complications and improve functional recovery after major cancer surgery. However, for bladder cancer the evidence is still limited. The aim of this study is to investigate the superiority of a multimodal prehabilitation programme versus standard-of-care in terms of reducing perioperative complications in patients with bladder cancer undergoing RC. METHODS AND ANALYSIS: This multicentre, open label, prospective, randomised controlled trial, will include 154 patients with bladder cancer undergoing RC. Patients are recruited from eight hospitals in The Netherlands and will be randomly (1:1) allocated to the intervention group receiving a structured multimodal prehabilitation programme of approximately 3-6 weeks, or to the control group receiving standard-of-care. The primary outcome is the proportion of patients who develop one or more grade ≥2 complications (according to the Clavien-Dindo classification) within 90 days of surgery. Secondary outcomes include cardiorespiratory fitness, length of hospital stay, health-related quality of life, tumour tissue biomarkers of hypoxia, immune cell infiltration and cost-effectiveness. Data collection will take place at baseline, before surgery and 4 and 12 weeks after surgery. ETHICS AND DISSEMINATION: Ethical approval for this study was granted by the Medical Ethics Committee NedMec (Amsterdam, The Netherlands) under reference number 22-595/NL78792.031.22. Results of the study will be published in international peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT05480735.


Subject(s)
Cystectomy , Urinary Bladder Neoplasms , Humans , Preoperative Exercise , Prospective Studies , Quality of Life , Urinary Bladder Neoplasms/surgery , Biomarkers, Tumor , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
9.
Front Immunol ; 14: 1101433, 2023.
Article in English | MEDLINE | ID: mdl-36923405

ABSTRACT

Introduction: CD8+ T cells infiltrate virtually every tissue to find and destroy infected or mutated cells. They often traverse varying oxygen levels and nutrient-deprived microenvironments. High glycolytic activity in local tissues can result in significant exposure of cytotoxic T cells to the lactate metabolite. Lactate has been known to act as an immunosuppressor, at least in part due to its association with tissue acidosis. Methods: To dissect the role of the lactate anion, independently of pH, we performed phenotypical and metabolic assays, high-throughput RNA sequencing, and mass spectrometry, on primary cultures of murine or human CD8+ T cells exposed to high doses of pH-neutral sodium lactate. Results: The lactate anion is well tolerated by CD8+ T cells in pH neutral conditions. We describe how lactate is taken up by activated CD8+ T cells and can displace glucose as a carbon source. Activation in the presence of sodium lactate significantly alters the CD8+ T cell transcriptome, including the expression key effector differentiation markers such as granzyme B and interferon-gamma. Discussion: Our studies reveal novel metabolic features of lactate utilization by activated CD8+ T cells, and highlight the importance of lactate in shaping the differentiation and activity of cytotoxic T cells.


Subject(s)
Lactic Acid , Transcriptome , Mice , Humans , Animals , Lactic Acid/metabolism , Sodium Lactate/metabolism , CD8-Positive T-Lymphocytes/metabolism , T-Lymphocytes, Cytotoxic/metabolism
10.
Lakartidningen ; 1192022 09 14.
Article in Swedish | MEDLINE | ID: mdl-36106740

ABSTRACT

Enhanced screening and efficient cancer treatments have led to a growing number of cancer survivors. In Sweden over 500 000 individuals have or have had cancer [1]. Cancer survivors can experience a wide range of disease and treatment related symptoms, that profoundly affect their health related quality of life. For example, women treated for breast cancer have on average 25 percent lower physical fitness compared to women without a cancer diagnosis. Recent evidence suggests that exercise has a positive effect on physical fitness, muscle strength, cancer related fatigue and quality of life among cancer survivors. An effective exercise prescription for health related outcomes in adult cancer survivors includes aerobic training at a moderate intensity for a total of 150 minutes per week. Adding resistance training two times per week has additional effects on muscle strength and physical functioning. Supervised exercise programs seem to be more effective than unsupervised or home based programs.


Subject(s)
Breast Neoplasms , Cancer Survivors , Adult , Breast Neoplasms/therapy , Exercise/physiology , Female , Humans , Muscle Strength , Quality of Life
11.
Trials ; 23(1): 610, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35906659

ABSTRACT

BACKGROUND: Many patients with metastatic breast cancer experience cancer- and treatment-related side effects that impair activities of daily living and negatively affect the quality of life. There is a need for interventions that improve quality of life by alleviating fatigue and other side effects during palliative cancer treatment. Beneficial effects of exercise have been observed in the curative setting, but, to date, comparable evidence in patients with metastatic breast cancer is lacking. The aim of this study is to assess the effects of a structured and individualized 9-month exercise intervention in patients with metastatic breast cancer on quality of life, fatigue, and other cancer- and treatment-related side effects. METHODS: The EFFECT study is a multinational, randomized controlled trial including 350 patients with metastatic breast cancer. Participants are randomly allocated (1:1) to an exercise or control group. The exercise group participates in a 9-month multimodal exercise program, starting with a 6-month period where participants exercise twice a week under the supervision of an exercise professional. After completing this 6-month period, one supervised session is replaced by one unsupervised session for 3 months. In addition, participants are instructed to be physically active for ≥30 min/day on all remaining days of the week, while being supported by an activity tracker and exercise app. Participants allocated to the control group receive standard medical care, general written physical activity advice, and an activity tracker, but no structured exercise program. The primary outcomes are quality of life (EORTC QLQ-C30, summary score) and fatigue (EORTC QLQ-FA12), assessed at baseline, 3, 6 (primary endpoint), and 9 months post-baseline. Secondary outcomes include physical fitness, physical performance, physical activity, anxiety, depression, pain, sleep problems, anthropometric data, body composition, and blood markers. Exploratory outcomes include quality of working life, muscle thickness, urinary incontinence, disease progression, and survival. Additionally, the cost-effectiveness of the exercise program is assessed. Adherence and safety are monitored throughout the intervention period. DISCUSSION: This large randomized controlled trial will provide evidence regarding the (cost-) effectiveness of exercise during treatment of metastatic breast cancer. If proven (cost-)effective, exercise should be offered to patients with metastatic breast cancer as part of standard care. TRIAL REGISTRATION: ClinicalTrials.gov NCT04120298 . Registered on October 9, 2019.


Subject(s)
Breast Neoplasms , Quality of Life , Activities of Daily Living , Breast Neoplasms/therapy , Exercise , Exercise Therapy/adverse effects , Fatigue/etiology , Fatigue/therapy , Female , Humans
12.
J Appl Physiol (1985) ; 132(6): 1448-1459, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35482326

ABSTRACT

High-intensity interval training (HIIT) generates profound metabolic adaptations in skeletal muscle. These responses mirror performance improvements but follow a nonlinear pattern comprised of an initial fast phase followed by a gradual plateau effect. The complete time-dependent molecular sequelae that regulates this plateau effect remains unknown. We hypothesize that the plateau effect during HIIT is restricted to specific pathways with communal upstream transcriptional regulation. To investigate this, 11 healthy men performed nine sessions of HIIT [10 × 4 min of cycling at 91% of maximal heart rate (HRmax)] over a 3-wk period. Before and 3 h after the 1st and 9th exercise bout, skeletal muscle biopsies were obtained, and RNA sequencing was performed. Almost 2,000 genes across 84 pathways were differentially expressed in response to a single HIIT session. The overall transcriptional response to acute exercise was strikingly similar at 3 wk, 83% (n = 1,650) of the genes regulated after the 1st bout of exercise were similarly regulated by the 9th bout, albeit with a smaller effect size, and the response attenuated to on average 70% of the 1st bout. The attenuation differed substantially between pathways and was especially pronounced for glycolysis and cellular adhesion compared to, e.g., MAPK and vascular endothelial growth factor (VEGF)-A signaling. The attenuation was driven by a combination of changes in steady-state expression and specific transcriptional regulation. Given that the exercise intensity was progressively increased, and the attenuation was pathway-specific, we suggest that moderation of muscular adaptation after a period of training stems from targeted regulation rather than a diminished exercise stimulus.NEW & NOTEWORTHY This is the first study to address the phenomena of attenuation of the acute exercise response on a global genomic scale with a focus on underlying regulatory machinery and it is, to the best of our knowledge, the first study conducted in humans was exercise-induced regulation of different canonical pathways and transcription factors are contrasted with regards to attenuation after a period with regular exercise training. These results provide evidence for a pathway-specific regulated augmentation of the response to acute exercise over time that tracks with the successive adaptation on the systemic level.


Subject(s)
High-Intensity Interval Training , Hypoxia-Inducible Factor 1, alpha Subunit , Adaptation, Physiological/physiology , Exercise/physiology , High-Intensity Interval Training/methods , Humans , Hypoxia-Inducible Factor 1/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Male , Muscle, Skeletal/physiology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
13.
Front Immunol ; 13: 837669, 2022.
Article in English | MEDLINE | ID: mdl-35251031

ABSTRACT

Targeting T cell metabolism is an established method of immunomodulation. Following activation, T cells engage distinct metabolic programs leading to the uptake and processing of nutrients that determine cell proliferation and differentiation. Redirection of T cell fate by modulation of these metabolic programs has been shown to boost or suppress immune responses in vitro and in vivo. Using publicly available T cell transcriptomic and proteomic datasets we identified vitamin B6-dependent transaminases as key metabolic enzymes driving T cell activation and differentiation. Inhibition of vitamin B6 metabolism using the pyridoxal 5'-phosphate (PLP) inhibitor, aminoxyacetic acid (AOA), suppresses CD8+ T cell proliferation and effector differentiation in a dose-dependent manner. We show that pyridoxal phosphate phosphatase (PDXP), a negative regulator of intracellular vitamin B6 levels, is under the control of the hypoxia-inducible transcription factor (HIF1), a central driver of T cell metabolism. Furthermore, by adoptive transfer of CD8 T cells into a C57BL/6 mouse melanoma model, we demonstrate the requirement for vitamin B6-dependent enzyme activity in mediating effective anti-tumor responses. Our findings show that vitamin B6 metabolism is required for CD8+ T cell proliferation and effector differentiation in vitro and in vivo. Targeting vitamin B6 metabolism may therefore serve as an immunodulatory strategy to improve anti-tumor immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Vitamin B 6 , Aminooxyacetic Acid/pharmacology , Animals , CD8-Positive T-Lymphocytes/immunology , Hypoxia-Inducible Factor 1, alpha Subunit , Melanoma/immunology , Mice , Mice, Inbred C57BL , Neoplasms/immunology , Phosphoprotein Phosphatases , Proteomics , Pyridoxal Phosphate/antagonists & inhibitors , Vitamin B 6/metabolism
14.
J Cachexia Sarcopenia Muscle ; 13(2): 1151-1163, 2022 04.
Article in English | MEDLINE | ID: mdl-35170227

ABSTRACT

BACKGROUND: Patients with breast cancer exhibit muscle weakness, which is associated with increased mortality risk and reduced quality of life. Muscle weakness is experienced even in the absence of loss of muscle mass in breast cancer patients, indicating intrinsic muscle dysfunction. Physical activity is correlated with reduced cancer mortality and disease recurrence. However, the molecular processes underlying breast cancer-induced muscle weakness and the beneficial effect of exercise are largely unknown. METHODS: Eight-week-old breast cancer (MMTV-PyMT, PyMT) and control (WT) mice had access to active or inactive in-cage voluntary running wheels for 4 weeks. Mice were also subjected to a treadmill test. Muscle force was measured ex vivo. Tumour markers were determined with immunohistochemistry. Mitochondrial biogenesis and function were assessed with transcriptional analyses of PGC-1α, the electron transport chain (ETC) and antioxidants superoxide dismutase (Sod) and catalase (Cat), combined with activity measurements of SOD, citrate synthase (CS) and ß-hydroxyacyl-CoA-dehydrogenase (ßHAD). Serum and intramuscular stress levels were evaluated by enzymatic assays, immunoblotting, and transcriptional analyses of, for example, tumour necrosis factor-α (TNF-α) and p38 mitogen-activated protein kinase (MAPK) signalling. RESULTS: PyMT mice endured shorter time and distance during the treadmill test (~30%, P < 0.05) and ex vivo force measurements revealed ~25% weaker slow-twitch soleus muscle (P < 0.001). This was independent of cancer-induced alteration of muscle size or fibre type. Inflammatory stressors in serum and muscle, including TNF-α and p38 MAPK, were higher in PyMT than in WT mice (P < 0.05). Cancer-induced decreases in ETC (P < 0.05, P < 0.01) and antioxidant gene expression were observed (P < 0.05). The exercise intervention counteracted the cancer-induced muscle weakness and was accompanied by a less aggressive, differentiated tumour phenotype, determined by increased CK8 and reduced CK14 expression (P < 0.05). In PyMT mice, the exercise intervention led to higher CS activity (P = 0.23), enhanced ß-HAD and SOD activities (P < 0.05), and reduced levels of intramuscular stressors together with a normalization of the expression signature of TNFα-targets and ETC genes (P < 0.05, P < 0.01). At the same time, the exercise-induced PGC-1α expression, and CS and ß-HAD activity was blunted in muscle from the PyMT mice as compared with WT mice, indicative that breast cancer interfere with transcriptional programming of mitochondria and that the molecular adaptation to exercise differs between healthy mice and those afflicted by disease. CONCLUSIONS: Four-week voluntary wheel running counteracted muscle weakness in PyMT mice which was accompanied by reduced intrinsic stress and improved mitochondrial and antioxidant profiles and activities that aligned with muscles of healthy mice.


Subject(s)
Breast Neoplasms , Muscle Weakness , Animals , Breast Neoplasms/metabolism , Female , Humans , Mice , Motor Activity , Muscle Weakness/metabolism , Muscle, Skeletal/metabolism , Quality of Life
15.
Front Physiol ; 13: 1078512, 2022.
Article in English | MEDLINE | ID: mdl-36714311

ABSTRACT

Background: Studies have shown that acute exercise can mobilize several leukocyte subpopulations in healthy individuals. Our aim was to investigate whether a 10-min acute exercise has an effect on immune cell proportions in lymphoma patients. Methods: This study included seven lymphoma patients referred to curative oncologic therapy. Three had Hodgkin and four non-Hodgkin lymphoma, one was female, and their mean age was 51. Patients underwent a 10-min acute exercise on a bicycle ergometer at moderate exercise intensity. Whole blood samples were taken at rest, immediately after exercise, and 30 min after exercise. Leukocyte subpopulation levels were determined using flow cytometry. Results: Proportions of total NK cells and CD56+CD16+ NK cells of total leukocytes increased immediately after exercise and decreased back to baseline at 30 min post-exercise. Proportion of CD8+ T cells of total T cells increased and proportion of CD4+ T cells of total T cells decreased immediately after exercise, and both returned to baseline at 30 min post-exercise. There was no change in the proportions of B cells, granulocytes, or monocytes. Exercising diastolic blood pressure correlated positively with changes in total NK cell and CD56+CD16+ NK cell proportions, and exercising mean arterial pressure correlated positively with change in CD56+CD16+ NK cell proportion. Conclusion: Our findings indicate that a single acute exercise bout of only 10 min can cause leukocytosis in lymphoma patients, particularly on cytotoxic T cells and NK cells, which are the most important immune cells fighting against cancer.

16.
Front Immunol ; 12: 633586, 2021.
Article in English | MEDLINE | ID: mdl-34054802

ABSTRACT

Myeloid cell interactions with cells of the adaptive immune system are an essential aspect of immunity. A key aspect of that interrelationship is its modulation by the microenvironment. Oxygen is known to influence myelosuppression of T cell activation in part via the Hypoxia inducible (HIF) transcription factors. A number of drugs that act on the HIF pathway are currently in clinical use and it is important to evaluate how they act on immune cell function as part of a better understanding of how they will influence patient outcomes. We show here that increased activation of the HIF pathway, either through deletion of the negative regulator of HIF, the von Hippel-Lindau (VHL) gene, in myeloid cells, or through pharmacological inhibitors of VHL-mediated degradation of HIF, potently suppresses T cell proliferation in myeloid cell/T cell culture. These data demonstrate that both pharmacological and genetic activation of HIF in myeloid cells can suppress adaptive cell immune response.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , Cell Proliferation/drug effects , Glycine/analogs & derivatives , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Isoquinolines/pharmacology , Macrophages/drug effects , Oxygen/metabolism , Adaptive Immunity , Animals , CD8-Positive T-Lymphocytes/physiology , Cell Hypoxia/drug effects , Cell Line, Tumor , Coculture Techniques , Glycine/pharmacology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Mice , Mice, Transgenic , Oxygen/pharmacology , Von Hippel-Lindau Tumor Suppressor Protein/genetics
18.
Cardiooncology ; 7(1): 7, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33588948

ABSTRACT

BACKGROUND: Adjuvant systemic breast cancer treatment improves disease specific outcomes, but also presents with cardiac toxicity. In this post-hoc exploratory analysis of the OptiTrain trial, the effects of exercise on cardiotoxicity were monitored by assessing fitness and biomarkers over the intervention and into survivorship. Methods; Women starting chemotherapy were randomized to 16-weeks of resistance and high-intensity interval training (RT-HIIT), moderate-intensity aerobic and high-intensity interval training (AT-HIIT), or usual care (UC). Outcome measures included plasma troponin-T (cTnT), Nt-pro-BNP and peak oxygen uptake (VO2peak), assessed at baseline, post-intervention, and at 1- and 2-years. RESULTS: For this per-protocol analysis, 88 women met criteria for inclusion. Plasma cTnT increased in all groups post-intervention. At the 1-year follow-up, Nt-pro-BNP was lower in the exercise groups compared to UC. At 2-years there was a drop in VO2peak for patients with high cTnT and Nt-pro-BNP. Fewer patients in the RT-HIIT group fulfilled biomarker risk criteria compared to UC (OR 0.200; 95% CI = 0.055-0.734). CONCLUSIONS: In this cohort, high-intensity exercise was associated with lower levels of NT-proBNP 1-year post-baseline, but not with cTnT directly after treatment completion. This may, together with the preserved VO2peak in patients with low levels of biomarkers, indicate a long-term cardioprotective effect of exercise. TRIAL REGISTRATION: Clinicaltrials. govNCT02522260 , Registered 13th of august 2015 - Retrospectively Registered.

19.
Cancer Immunol Res ; 9(4): 401-414, 2021 04.
Article in English | MEDLINE | ID: mdl-33602720

ABSTRACT

Adoptive transfer of antitumor cytotoxic T cells is an emerging form of cancer immunotherapy. A key challenge to expanding the utility of adoptive cell therapies is how to enhance the survival and function of the transferred T cells. Immune-cell survival requires adaptation to different microenvironments and particularly to the hypoxic milieu of solid tumors. The hypoxia-inducible factor (HIF) transcription factors are an essential aspect of this adaptation. In this study, we undertook experiments to define structural determinants of HIF that potentiate antitumor efficacy in cytotoxic T cells. We first created retroviral vectors to deliver ectopic expression of HIF1α and HIF2α in mouse CD8+ T cells, together or individually and with or without sensitivity to the oxygen-dependent HIFα inhibitors Von Hippel-Lindau and factor-inhibiting HIF (FIH). HIF2α, but not HIF1α, drove broad transcriptional changes in CD8+ T cells, resulting in increased cytotoxic differentiation and cytolytic function against tumor targets. A specific mutation replacing the hydroxyl group-acceptor site for FIH in HIF2α gave rise to the most effective antitumor T cells after adoptive transfer in vivo In addition, codelivering an FIH-insensitive form of HIF2α with an anti-CD19 chimeric antigen receptor greatly enhanced cytolytic function of human CD8+ T cells against lymphoma cells both in vitro and in a xenograft adoptive transfer model. These experiments point to a means to increase the antitumor efficacy of therapeutic CD8+ T cells via ectopic expression of the HIF transcription factor.See related Spotlight on p. 364.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/immunology , CD8-Positive T-Lymphocytes/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Hypoxia/immunology , Immunotherapy, Adoptive , Animals , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Cell Line, Tumor , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Transcription Factors , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...