Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 20(5): 1059-66, 2001 May.
Article in English | MEDLINE | ID: mdl-11337869

ABSTRACT

Laboratory wetland microcosms were used to study treatment of atrazine in irrigation runoff by a field-scale-constructed wetland under controlled conditions. Three experiments, in which 1 ppm atrazine was added to the water column of three wetland, one soil control, and one water control microcosm, were conducted. Atrazine dissipation from the water column and degradate formation (deethylatrazine [DEA]; deisopropylatrazine [DIA]; and hydroxyatrazine [HA]) were monitored. Atrazine dissipation from the water column of wetland microcosms was biphasic. Less than 12% of the atrazine applied to wetland microcosms remained in the water column on day 56. Atrazine degradates were observed in water and sediment, with HA the predominant degradate. Analysis of day 56 sediment samples indicated that a significant portion of the initial application was detected as the parent compound and HA. Most probable number (MPN) assays demonstrated that atrazine degrader populations were small in wetland sediment. Wetland microcosms were able to reduce atrazine concentration in the water column via sorption and degradation. Based on results from this study, it is hypothesized that plant uptake contributed to atrazine dissipation from the water column.


Subject(s)
Atrazine/metabolism , Herbicides/metabolism , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Spectrophotometry, Ultraviolet
2.
Appl Microbiol Biotechnol ; 57(3): 427-32, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11759697

ABSTRACT

The potential to establish pesticide biodegradation in constructed wetland sediment was investigated. Under microcosm conditions, bioaugmentation of sediment with small quantities of an atrazine spill-site soil (1:100 w/w) resulted in the mineralization of 25-30% of 14C ethyl atrazine (1-10 microg g(-1) sediment) as 14CO2 under both unsaturated and water-saturated conditions; atrazine and its common metabolites were almost undetectable after 30 days incubation. By comparison, unbioaugmented sediment supplemented with organic amendments (cellulose or cattail leaves) mineralized only 2-3% of 14C ethyl atrazine, and extractable atrazine and its common metabolites comprised approximately 70% of the original application. The population density of atrazine-degrading microorganisms in unbioaugmented sediment was increased from approximately 10(2)/g to 10(4)/g by bioaugmentation (1:100 w/w), and increased by another 60-fold (6.0x10(5) g(-1)) after incubation with 10 microg g(-1) of atrazine. A high population of atrazine degraders (approximately 10(6) g(-1)) and enhanced rates of atrazine mineralization also developed in bioaugmented sediment after incubation in flooded mesocosms planted with cattails (Typha latifolia) and supplemented with atrazine (3.2 mg l(-1), 1 microg g(-1) sediment). In the absence of atrazine, neither the population of atrazine degraders, nor the atrazine mineralizing potential of bioaugmented sediment increased, regardless of the presence or absence of cattails. Bioaugmentation might be a simple method to promote pesticide degradation in nursery run-off channeled through constructed wetlands, if persistence of degraders in the absence of pesticide is not a serious constraint.


Subject(s)
Atrazine/metabolism , Geologic Sediments/microbiology , Herbicides/metabolism , Soil Microbiology , Water Pollutants, Chemical/metabolism , Oregon , Plants
3.
J Agric Food Chem ; 47(8): 3252-6, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10552640

ABSTRACT

Triadimefon, a fungicide, and ethofumesate, an herbicide, are commonly applied to turfgrass in the Pacific Northwest, resulting in foliar residues. A simple and rapid method was developed to determine triadimefon and ethofumesate concentrations from dislodgeable foliar residues on turfgrass. Turfgrass samples were washed, and wash water containing surfactant (a 0.126% solution) was collected for residue analysis. This analytical method utilizes a 25 mm C(8) Empore disk and in-vial elution to quantitatively determine triadimefon and ethofumesate in 170 mL aqueous samples. The analytes were eluted by placing the disk in a 2 mL autosampler vial with 980 microL of ethyl acetate and 20 microL of 2-chlorolepidine, the internal standard, for analysis by GC/MS. The method quantitation limits are 0.29 microg/L for ethofumesate and 0.59 microg/L for triadimefon. The method detection limits are 0.047 microg/L and 0.29 microg/L for ethofumesate and triadimefon, respectively. Concentrations of triadimefon and ethofumesate from dislodgeable foliar residues from a field study are reported.


Subject(s)
Benzofurans/analysis , Drug Residues/analysis , Fungicides, Industrial/analysis , Herbicides/analysis , Mesylates/analysis , Poaceae/chemistry , Triazoles/analysis , Filtration/methods , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...