Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38498419

ABSTRACT

Effects of rising atmospheric CO2 concentration [CO2] on pastures and grazing lands are beginning to be researched, but these important systems remain understudied compared to other agronomic and forest ecosystems. Therefore, we conducted a long-term (2005-2015) study of bahiagrass (Paspalum notatum Flüggé) response to elevated [CO2] and fertility management. The study was conducted at the USDA-ARS, National Soil Dynamics Laboratory open-top field chamber facility, Auburn, AL. A newly established bahiagrass pasture was exposed to either ambient or elevated (ambient + 200 µmol mol-1) [CO2]. Following one year of pasture establishment, half the plots received a fertilizer treatment [N at 90 kg ha-1 three times yearly plus P, K, and lime as recommended by soil testing]; the remaining plots received no fertilization. These treatments were implemented to represent managed (M) and unmanaged (U) pastures; both are common in the southeastern US. Root cores (0-60 cm depth) were collected annually in October and processed using standard procedures. Fertility additions consistently increased both root length density (53.8%) and root dry weight density (68.2%) compared to unmanaged plots, but these root variables were generally unaffected by either [CO2] or its interaction with management. The results suggest that southern bahiagrass pastures could benefit greatly from fertilizer additions. However, bahiagrass pasture root growth is unlikely to be greatly affected by rising atmospheric [CO2], at least by those levels expected during this century.

2.
Planta ; 255(4): 93, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35325309

ABSTRACT

MAIN CONCLUSION: By combining hyperspectral signatures of peanut and soybean, we predicted Vcmax and Jmax with 70 and 50% accuracy. The PLS was the model that better predicted these photosynthetic parameters. One proposed key strategy for increasing potential crop stability and yield centers on exploitation of genotypic variability in photosynthetic capacity through precise high-throughput phenotyping techniques. Photosynthetic parameters, such as the maximum rate of Rubisco catalyzed carboxylation (Vc,max) and maximum electron transport rate supporting RuBP regeneration (Jmax), have been identified as key targets for improvement. The primary techniques for measuring these physiological parameters are very time-consuming. However, these parameters could be estimated using rapid and non-destructive leaf spectroscopy techniques. This study compared four different advanced regression models (PLS, BR, ARDR, and LASSO) to estimate Vc,max and Jmax based on leaf reflectance spectra measured with an ASD FieldSpec4. Two leguminous species were tested under different controlled environmental conditions: (1) peanut under different water regimes at normal atmospheric conditions and (2) soybean under high [CO2] and high night temperature. Model sensitivities were assessed for each crop and treatment separately and in combination to identify strengths and weaknesses of each modeling approach. Regardless of regression model, robust predictions were achieved for Vc,max (R2 = 0.70) and Jmax (R2 = 0.50). Field spectroscopy shows promising results for estimating spatial and temporal variations in photosynthetic capacity based on leaf and canopy spectral properties.


Subject(s)
Arachis , Glycine max , Photosynthesis/physiology , Plant Leaves/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Glycine max/metabolism
3.
Glob Chang Biol ; 23(4): 1585-1597, 2017 04.
Article in English | MEDLINE | ID: mdl-27726258

ABSTRACT

Soil pore structure has a strong influence on water retention, and is itself influenced by plant and microbial dynamics such as root proliferation and microbial exudation. Although increased nitrogen (N) availability and elevated atmospheric CO2 concentrations (eCO2 ) often have interacting effects on root and microbial dynamics, it is unclear whether these biotic effects can translate into altered soil pore structure and water retention. This study was based on a long-term experiment (7 yr at the time of sampling) in which a C4 pasture grass (Paspalum notatum) was grown on a sandy loam soil while provided factorial additions of N and CO2 . Through an analysis of soil aggregate fractal properties supported by 3D microtomographic imagery, we found that N fertilization induced an increase in intra-aggregate porosity and a simultaneous shift toward greater accumulation of pore space in larger aggregates. These effects were enhanced by eCO2 and yielded an increase in water retention at pressure potentials near the wilting point of plants. However, eCO2 alone induced changes in the opposite direction, with larger aggregates containing less pore space than under control conditions, and water retention decreasing accordingly. Results on biotic factors further suggested that organic matter gains or losses induced the observed structural changes. Based on our results, we postulate that the pore structure of many mineral soils could undergo N-dependent changes as atmospheric CO2 concentrations rise, having global-scale implications for water balance, carbon storage, and related rhizosphere functions.


Subject(s)
Nitrogen/chemistry , Soil/chemistry , Carbon , Carbon Dioxide , Soil Microbiology
4.
Sci Rep ; 6: 25210, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27140321

ABSTRACT

Three woody shrub species [cleyera (Ternstroemia gymnanthera Thunb. 'Conthery'), Indian hawthorn (Rhaphiolepis indica L.) and loropetalum (Loropetalum chinensis Oliv.'Ruby')] were container-grown for one growing season in 2008 using either pinebark (industry standard), clean chip residual or WholeTree (derived by-products from the forestry industry) as potting substrates and then transplanted into the landscape in 2008. An Automated Carbon Efflux System was used to continually monitor soil CO2 efflux from December 2010 through November 2011 in each species and substrate combination. Changes in soil carbon (C) levels as a result of potting substrate were assessed through soil sampling in 2009 and 2011 and plant biomass was determined at study conclusion. Results showed that soil CO2-C efflux was similar among all species and substrates, with few main effects of species or substrate observed throughout the study. Soil analysis showed that plots with pinebark contained higher levels of soil C in both 2009 and 2011, suggesting that pinebark decomposes slower than clean chip residual or WholeTree and consequently has greater C storage potential than the two alternative substrates. Results showed a net C gain for all species and substrate combinations; however, plants grown in pinebark had greater C sequestration potential.


Subject(s)
Carbon/analysis , Soil/chemistry , Tracheophyta/growth & development , Biodiversity , Tracheophyta/classification
5.
J Environ Qual ; 44(6): 1699-710, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26641321

ABSTRACT

Enhanced-efficiency N fertilizers (EENFs) have the potential to increase crop yield while decreasing soil N loss. However, the effect of EENFs on greenhouse gas (GHG) emissions from different agricultural systems is not well understood. Thus, studies from a variety of locations and cropping systems are needed to evaluate their impact. An experiment was initiated on a Coastal Plain soil under cotton ( L.) production for comparing EENFs to traditional sources. Nitrogen sources included urea, ammonia sulfate (AS), urea-ammonia sulfate (UAS), controlled-release, polymer-coated urea (Environmental Smart Nitrogen [ESN]), stabilized granular urea (SuperU), poultry litter (PL), poultry litter plus AgrotainPlus (PLA), and an unfertilized control. Carbon dioxide (CO), nitrous oxide (NO), and methane (CH) fluxes were monitored regularly after fertilization through harvest from 2009 to 2011 using a closed-chamber method. Poultry litter and PLA had higher CO flux than other N treatments, while ESN and SU were generally lowest following fertilization. Nitrous oxide fluxes were highly variable and rarely affected by N treatments; PL and PLA were higher but only during the few samplings in 2010 and 2011. Methane fluxes were higher in 2009 (wet year) than 2010 or 2011, and N treatments had minimal impact. Global warming potential (GWP), calculated from cumulative GHG fluxes, was highest with PL and PLA and lowest for control, UAS, ESN, and SU. Results suggest that PL application to cotton increases GHG flux, but GHG flux reductions from EENFs were infrequently different from standard inorganic fertilizers, suggesting their higher cost may render them presently impractical.

6.
Front Plant Sci ; 6: 1, 2015.
Article in English | MEDLINE | ID: mdl-25653664

ABSTRACT

Atmospheric concentrations of carbon dioxide (CO2) have significantly increased over the past century and are expected to continue rising in the future. While elevated levels of CO2 will likely result in higher crop yields, weed growth is also highly likely to increase, which could increase the incidence of herbicide resistant biotypes. An experiment was conducted in 2012 to determine the effects of an elevated CO2 environment on glyphosate and halosulfuron efficacy for postemergence control of purple and yellow nutsedge (Cyperus rotundus L. and C. esculentus L.). Both species of nutsedge where grown in 3.0-L containers under either ambient or elevated (ambient + 200 µmol mol(-1)) CO2 in open-top field chambers and treated with either 0.5×, 1.0×, or 1.5× of the manufacturer's labeled rate of halosulfuron, glyphosate, or a tank mix of the two herbicides. The growth of both nutsedge species responded positively to elevated CO2, purple nutsedge had increased shoot and root dry weights and yellow nutsedge had increased shoot, root, and tuber dry weights and counts. Few treatment differences were observed among the herbicides at any of the rates tested. At 3 weeks following herbicide application, both purple and yellow nutsedge were adequately controlled by both herbicides and combinations at all rates tested, regardless of CO2 concentration. Based on this study, it is likely that predicted future CO2 levels will have little impact on the efficacy of single applications of halosulfuron or glyphosate for control of purple and yellow nutsedge at the growth stages described here, although scenarios demanding more persistent control efforts remain a question.

7.
Front Plant Sci ; 6: 1182, 2015.
Article in English | MEDLINE | ID: mdl-26779216

ABSTRACT

Cogongrass [Imperata cylindrica (L.) P. Beauv] is an invasive C4 perennial grass which is listed as one of the top ten worst weeds in the world and is a major problem in the Southeast US. Five cogongrass ecotypes [Florida (FL), Hybrid (HY), Louisiana (LA), Mobile (MB), and North Alabama (NA)] collected across the Southeast and a red-tip (RT) ornamental variety were container grown for 6 months in open top chambers under ambient and elevated (ambient plus 200 ppm) atmospheric CO2. Elevated CO2 increased average dry weight (13%) which is typical for grasses. Elevated CO2 increased height growth and both nitrogen and water use efficiencies, but lowered tissue nitrogen concentration; again, these are typical plant responses to elevated CO2. The HY ecotype tended to exhibit the greatest growth (followed by LA, NA, and FL ecotypes) whiles the RT and MB ecotypes were smallest. Interactions of CO2 with ecotype generally showed that the HY, LA, FL, and/or NA ecotypes showed a positive response to CO2 while the MB and RT ecotypes did not. Cogongrass is a problematic invasive weed in the southeastern U.S. and some ecotypes may become more so as atmospheric CO2 continues to rise.

8.
Front Plant Sci ; 5: 500, 2014.
Article in English | MEDLINE | ID: mdl-25309569

ABSTRACT

Herbicide resistant weed populations have developed due to the repeated application of herbicides. Elevated concentrations of atmospheric CO2 can have positive effects on weed growth, but how rising CO2 might affect herbicide resistant weeds is not known. Ragweed (Ambrosia artemisiifolia L.) ecotypes known to be resistant or susceptible to glyphosate herbicide were exposed to either ambient or elevated (ambient +200 µ mol mol(-1)) concentrations of CO2 in open top chambers. Plants were harvested following 8 weeks of CO2 exposure; at this time, they had begun to exhibit disease symptoms including spots on leaves and stems. Elevated CO2 significantly increased top, root, and total plant biomass. Also, glyphosate resistant plants had significantly greater top, root, and total biomass than plants susceptible to the herbicide. There were no significant CO2 by ecotype interactions. Fungi from 13 genera were associated with ragweed, several of which can be either pathogens (i.e., Alternaria, Fusarium, Rhizoctonia), aiding the decline in health of the ragweed plants, or saprophytes existing on dead plant tissues. The common foliar disease powdery mildew was significantly higher on susceptible compared with resistant ragweed. Susceptible plants also showed an increased frequency of Rhizoctonia on leaves and Alternaria on stems; however, Fusarium occurred more frequently on resistant ragweed leaves. Fungi were not affected by CO2 concentration or its interaction with ecotype. This study reports the first information on the effects of elevated CO2 on growth of herbicide resistant weeds. This is also the first study examining the impact of herbicide resistance and elevated CO2 on fungi associated with weeds. What effects herbicide resistance might have on plant diseases and how rising atmospheric CO2 might impact these effects needs to be addressed, not only with important weeds but also with crops.

9.
J Environ Qual ; 38(2): 729-33, 2009.
Article in English | MEDLINE | ID: mdl-19244494

ABSTRACT

Although considerable effort is being spent studying exotic plant pests, little consideration has been given as to how invasive plants might react to the increasing concentration of CO(2) in the atmosphere. Tropical spiderwort (Commelina benghalensis L.) is considered one the world's worst weeds and is becoming more of a problem in agricultural settings of the southeastern USA. Growth responses of tropical spiderwort were evaluated using plants grown in containers with a soilless potting medium under ambient and elevated (ambient + 200 mumol mol(-)(1)) levels of CO(2) in open-top field chambers. Although plant height was unaffected by CO(2), leaf and flower number tended to increase (approximately 23%) when exposed to elevated CO(2). Aboveground plant parts exhibited significant increases in dry weight when exposed to high CO(2); leaf, flower, stem, and total shoot dry weights were increased by 36, 30, 48, and 44%, respectively. Total plant dry weight was increased by 41% for plants grown under high CO(2). Root dry weight and root length were unaffected by CO(2) concentration. Tropical spiderwort allocated more biomass to stems and tended to allocate less to roots when plants were exposed to high CO(2). Plant carbon concentration and content tended to be higher in CO(2)-enriched plants, whereas plant nitrogen concentration tended to be lower; thus, elevated CO(2)-grown plants had higher C/N ratios. Also, the amount of biomass produced per unit nitrogen was higher for plants exposed to elevated CO(2). The growth response of this plant is in the upper range typical for C3 plants.


Subject(s)
Carbon Dioxide/physiology , Commelina/growth & development , Agriculture , Atmosphere/chemistry
10.
New Phytol ; 159(3): 531-533, 2003 Sep.
Article in English | MEDLINE | ID: mdl-33873606
11.
New Phytol ; 128(3): 443-450, 1994 Nov.
Article in English | MEDLINE | ID: mdl-33874580

ABSTRACT

Grain sorghum [Sorghum bicolor (L.) Moench, a C4 crop] and soybean [Glycine max (L.) Merr. cv. Stonewall, a C3 crop] plants were grown in ambient (c. 360µl 1-1 ) and twice-ambient (c. 720 µl 1-1 ) CO2 levels in open-top chambers in soil without root constriction. Plant dry mass, energy content, composition and construction cost (i.e. amount of carbohydrate required to synthesize a unit of plant dry mass) were assessed at the end of the growing season. Elevated CO2 (a) increased phytomass accumulation (kg per plant) in both species, (b) had little affect on energy concentration (MJ kg-1 plant) but caused large increases in the amount of plant energy per ground area (MJ m-2 ground), and (c) did not alter specific growth cost (kg carbohydrate kg-1 plant growth) but greatly increased growth cost per ground area (kg carbohydrate m-2 ground) because growth was enhanced. For soybean, twice-ambient CO2 resulted in a 50 % increase in the amount of nitrogen and energy in grain (seed plus pod) per ground area. This response to elevated CO2 has important implications for agricultural productivity during the next century because the rate of human population growth is exceeding the rate of increase of land used for agriculture so that future food demands can only be met by greater production per ground area.

SELECTION OF CITATIONS
SEARCH DETAIL
...