Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 26(7): 1114-1124, 2020 07.
Article in English | MEDLINE | ID: mdl-32483360

ABSTRACT

In many areas of oncology, we lack sensitive tools to track low-burden disease. Although cell-free DNA (cfDNA) shows promise in detecting cancer mutations, we found that the combination of low tumor fraction (TF) and limited number of DNA fragments restricts low-disease-burden monitoring through the prevailing deep targeted sequencing paradigm. We reasoned that breadth may supplant depth of sequencing to overcome the barrier of cfDNA abundance. Whole-genome sequencing (WGS) of cfDNA allowed ultra-sensitive detection, capitalizing on the cumulative signal of thousands of somatic mutations observed in solid malignancies, with TF detection sensitivity as low as 10-5. The WGS approach enabled dynamic tumor burden tracking and postoperative residual disease detection, associated with adverse outcome. Thus, we present an orthogonal framework for cfDNA cancer monitoring via genome-wide mutational integration, enabling ultra-sensitive detection, overcoming the limitation of cfDNA abundance and empowering treatment optimization in low-disease-burden oncology care.


Subject(s)
Biomarkers, Tumor/genetics , Circulating Tumor DNA/blood , DNA, Neoplasm/genetics , Neoplasms/blood , Biomarkers, Tumor/blood , Cell-Free Nucleic Acids/blood , DNA Copy Number Variations/genetics , DNA, Neoplasm/blood , Disease-Free Survival , Female , Genome, Human/genetics , High-Throughput Nucleotide Sequencing , Humans , Kaplan-Meier Estimate , Male , Mutation/genetics , Neoplasms/genetics , Neoplasms/pathology , Tumor Burden/genetics , Whole Genome Sequencing
2.
PLoS Genet ; 14(8): e1007559, 2018 08.
Article in English | MEDLINE | ID: mdl-30096138

ABSTRACT

The biology and behavior of adults differ substantially from those of developing animals, and cell-specific information is critical for deciphering the biology of multicellular animals. Thus, adult tissue-specific transcriptomic data are critical for understanding molecular mechanisms that control their phenotypes. We used adult cell-specific isolation to identify the transcriptomes of C. elegans' four major tissues (or "tissue-ome"), identifying ubiquitously expressed and tissue-specific "enriched" genes. These data newly reveal the hypodermis' metabolic character, suggest potential worm-human tissue orthologies, and identify tissue-specific changes in the Insulin/IGF-1 signaling pathway. Tissue-specific alternative splicing analysis identified a large set of collagen isoforms. Finally, we developed a machine learning-based prediction tool for 76 sub-tissue cell types, which we used to predict cellular expression differences in IIS/FOXO signaling, stage-specific TGF-ß activity, and basal vs. memory-induced CREB transcription. Together, these data provide a rich resource for understanding the biology governing multicellular adult animals.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Gene Expression Profiling , Alternative Splicing , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Gene Library , Insulin/metabolism , Insulin-Like Growth Factor I/metabolism , Models, Molecular , Phenotype , Protein Isoforms , Sequence Analysis, RNA , Signal Transduction , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
3.
Elife ; 62017 03 14.
Article in English | MEDLINE | ID: mdl-28290982

ABSTRACT

Differences in longevity between sexes is a mysterious yet general phenomenon across great evolutionary distances. To test the roles of responses to environmental cues and sexual behaviors in longevity regulation, we examined Caenorhabditis male lifespan under solitary, grouped, and mated conditions. We find that neurons and the germline are required for male pheromone-dependent male death. Hermaphrodites with a masculinized nervous system secrete male pheromone and are susceptible to male pheromone killing. Male pheromone-mediated killing is unique to androdioecious Caenorhabditis, and may reduce the number of males in hermaphroditic populations; neither males nor females of gonochoristic species are susceptible to male pheromone killing. By contrast, mating-induced death, which is characterized by germline-dependent shrinking, glycogen loss, and ectopic vitellogenin expression, utilizes distinct molecular pathways and is shared between the sexes and across species. The study of sex- and species-specific regulation of aging reveals deeply conserved mechanisms of longevity and population structure regulation.


Subject(s)
Caenorhabditis/physiology , Longevity , Pheromones/metabolism , Sexual Behavior, Animal , Animals , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...