Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Dev ; 29(20): 2081-96, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26494785

ABSTRACT

Mutations in the transcription factor Forkhead box p1 (FOXP1) are causative for neurodevelopmental disorders such as autism. However, the function of FOXP1 within the brain remains largely uncharacterized. Here, we identify the gene expression program regulated by FoxP1 in both human neural cells and patient-relevant heterozygous Foxp1 mouse brains. We demonstrate a role for FoxP1 in the transcriptional regulation of autism-related pathways as well as genes involved in neuronal activity. We show that Foxp1 regulates the excitability of striatal medium spiny neurons and that reduction of Foxp1 correlates with defects in ultrasonic vocalizations. Finally, we demonstrate that FoxP1 has an evolutionarily conserved role in regulating pathways involved in striatal neuron identity through gene expression studies in human neural progenitors with altered FOXP1 levels. These data support an integral role for FoxP1 in regulating signaling pathways vulnerable in autism and the specific regulation of striatal pathways important for vocal communication.


Subject(s)
Autism Spectrum Disorder/physiopathology , Corpus Striatum/physiopathology , Forkhead Transcription Factors/metabolism , Repressor Proteins/metabolism , Signal Transduction/genetics , Animals , Autism Spectrum Disorder/genetics , Cells, Cultured , Disease Models, Animal , Forkhead Transcription Factors/genetics , Gene Expression Regulation/genetics , Haploinsufficiency , Hippocampus/physiopathology , Humans , Mice , Mice, Inbred C57BL , Mutation , Neurons/pathology , Repressor Proteins/genetics , Verbal Behavior/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...