Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 113(8): 1729-35, 2016 08.
Article in English | MEDLINE | ID: mdl-26806816

ABSTRACT

By a sulfite oxidation method, oxygen transfer rates (OTRs) were determined in 11 types of culture vessels from 2.8-L Fernbach (FB) flasks to 96-, 48-, and 24-well square deepwell microtiter plates (MTPs). OTRs ranged from 140 mM/h in 250-mL Ultrayield™ flasks shaken at 300 rpm with a 50 mm diameter shaker throw to 5 mM/h in unbaffled FBs shaken at 200 rpm with a 25 mm throw. Baffles in FBs increased OTRs 6-12-fold under various shaking conditions, and up to five-fold in 250-mL flasks, depending on the type of baffles. Corner-baffling was superior to bottom-baffling in glass, 250-mL flasks. In MTPs, OTRs increased with increasing well size and decreasing fill volume. At 50 mm throw and 300 rpm, 24-well MTPs had OTRs comparable to corner-baffled, 250-mL flasks (∼100 mM/h). The OTRs in unbaffled flasks were relatively insensitive to shaking conditions, increasing less than two-fold between the most modest and the most vigorous conditions. There was no consistency across vessels as to whether the alternate incubation conditions of 70 mm throw and 250 rpm produced higher OTRs than the 50 mm throw and 300 rpm regimen. No increase in OTR was seen in any MTP when the cover hole diameter was increased beyond 4.5 mm. OTRs decreased as viscosity increased, falling smoothly in unbaffled flasks and 24-well MTPs, but 48-well and 96-well MTPs showed precipitous OTR drops as viscosity increased. Matching the OTRs of screening vessels to the oxygen uptake rates of microbial cultures can greatly reduce the number of false positive strains that are forwarded from microbial screens. Biotechnol. Bioeng. 2016;113: 1729-1735. © 2016 Wiley Periodicals, Inc.


Subject(s)
Batch Cell Culture Techniques , Bioreactors , Microtechnology , Oxygen/analysis , Batch Cell Culture Techniques/instrumentation , Batch Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Culture Media , Fermentation , Microtechnology/instrumentation , Microtechnology/methods , Oxygen/isolation & purification , Viscosity
2.
Metab Eng ; 7(3): 201-14, 2005 May.
Article in English | MEDLINE | ID: mdl-15885618

ABSTRACT

Glucosamine and N-acetylglucosamine are currently produced by extraction and acid hydrolysis of chitin from shellfish waste. Production could be limited by the amount of raw material available and the product potentially carries the risk of shellfish protein contamination. Escherichia coli was modified by metabolic engineering to develop a fermentation process. Over-expression of glucosamine synthase (GlmS) and inactivation of catabolic genes increased glucosamine production by 15 fold, reaching 60 mg l(-1). Since GlmS is strongly inhibited by glucosamine-6-P, GlmS variants were generated via error-prone PCR and screened. Over-expression of an improved enzyme led to a glucosamine titer of 17 g l(-1). Rapid degradation of glucosamine and inhibitory effects of glucosamine and its degradation products on host cells limited further improvement. An alternative fermentation product, N-acetylglucosamine, is stable, non-inhibitory to the host and readily hydrolyzed to glucosamine under acidic conditions. Therefore, the glucosamine pathway was extended to N-acetylglucosamine by over-expressing a heterologous glucosamine-6-P N-acetyltransferase. Using a simple and low-cost fermentation process developed for this strain, over 110 g l(-1) of N-acetylglucosamine was produced.


Subject(s)
Escherichia coli/metabolism , Glucosamine/biosynthesis , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/genetics , Glutamine-Fructose-6-Phosphate Transaminase (Isomerizing)/metabolism , Industrial Microbiology/methods , Protein Engineering/methods , Acetylglucosamine/genetics , Acetylglucosamine/metabolism , Cloning, Molecular/methods , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/physiology , Gene Silencing/physiology , Genetic Enhancement/methods , Glucosamine/genetics , Mutagenesis, Site-Directed , Pilot Projects , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...