Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 727: 138471, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32498205

ABSTRACT

In this work, the climatic impacts of modifying urban surface characteristics are examined for the medium-sized city of Vantaa, Finland, in the current climate and in a projected future climate of 2040-2069. In simulations with the SURFEX air-surface interaction model with a horizontal resolution of 500 m, the fraction of green spaces and relatively sparsely built suburban-type land use was increased at the expense of more densely built commercial and industrial areas. The influence of this land use intervention was found to be rather modest but comparable to the effects of the expected climate change under the RCP8.5 greenhouse gas scenario. For temperature, the climate change is the dominating effect, while wind speed is mainly controlled by surface characteristics. For relative humidity, climate change and the imposed intervention are of comparable importance. The results of this sensitivity study are intended to support policy makers by assessing the potential impact of altering the urban layout in order to improve thermal comfort or as a countermeasure to climate warming in a high-latitude city.

2.
Glob Chang Biol ; 26(8): 4178-4196, 2020 08.
Article in English | MEDLINE | ID: mdl-32449267

ABSTRACT

Climate change induces multiple abiotic and biotic risks to forests and forestry. Risks in different spatial and temporal scales must be considered to ensure preconditions for sustainable multifunctional management of forests for different ecosystem services. For this purpose, the present review article summarizes the most recent findings on major abiotic and biotic risks to boreal forests in Finland under the current and changing climate, with the focus on windstorms, heavy snow loading, drought and forest fires and major insect pests and pathogens of trees. In general, the forest growth is projected to increase mainly in northern Finland. In the south, the growing conditions may become suboptimal, particularly for Norway spruce. Although the wind climate does not change remarkably, wind damage risk will increase especially in the south, because of the shortening of the soil frost period. The risk of snow damage is anticipated to increase in the north and decrease in the south. Increasing drought in summer will boost the risk of large-scale forest fires. Also, the warmer climate increases the risk of bark beetle outbreaks and the wood decay by Heterobasidion root rot in coniferous forests. The probability of detrimental cascading events, such as those caused by a large-scale wind damage followed by a widespread bark beetle outbreak, will increase remarkably in the future. Therefore, the simultaneous consideration of the biotic and abiotic risks is essential.


Subject(s)
Forestry , Taiga , Animals , Climate Change , Ecosystem , Finland , Forests , Norway
3.
Data Brief ; 4: 162-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26217782

ABSTRACT

Dynamic building energy simulations need hourly weather data as input. The same high temporal resolution is required for assessments of future heating and cooling energy demand. The data presented in this article concern current typical values and estimated future changes in outdoor air temperature, wind speed, relative humidity and global, diffuse and normal solar radiation components. Simulated annual and seasonal delivered energy consumptions for heating of spaces, heating of ventilation supply air and cooling of spaces in the current and future climatic conditions are also presented for an example house, with district heating and a mechanical space cooling system. We provide details on how the synthetic future weather files were created and utilised as input data for dynamic building energy simulations by the IDA Indoor Climate and Energy program and also for calculations of heating and cooling degree-day sums. The information supplied here is related to the research article titled "Energy demand for the heating and cooling of residential houses in Finland in a changing climate" [1].

SELECTION OF CITATIONS
SEARCH DETAIL
...