Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 1000, 2022 01 19.
Article in English | MEDLINE | ID: mdl-35046459

ABSTRACT

Blood cancer has been a growing concern during the last decade and requires early diagnosis to start proper treatment. The diagnosis process is costly and time-consuming involving medical experts and several tests. Thus, an automatic diagnosis system for its accurate prediction is of significant importance. Diagnosis of blood cancer using leukemia microarray gene data and machine learning approach has become an important medical research today. Despite research efforts, desired accuracy and efficiency necessitate further enhancements. This study proposes an approach for blood cancer disease prediction using the supervised machine learning approach. For the current study, the leukemia microarray gene dataset containing 22,283 genes, is used. ADASYN resampling and Chi-squared (Chi2) features selection techniques are used to resolve imbalanced and high-dimensional dataset problems. ADASYN generates artificial data to make the dataset balanced for each target class, and Chi2 selects the best features out of 22,283 to train learning models. For classification, a hybrid logistics vector trees classifier (LVTrees) is proposed which utilizes logistic regression, support vector classifier, and extra tree classifier. Besides extensive experiments on the datasets, performance comparison with the state-of-the-art methods has been made for determining the significance of the proposed approach. LVTrees outperform all other models with ADASYN and Chi2 techniques with a significant 100% accuracy. Further, a statistical significance T-test is also performed to show the efficacy of the proposed approach. Results using k-fold cross-validation prove the supremacy of the proposed model.


Subject(s)
Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/genetics , Leukemia/genetics , Supervised Machine Learning , Hematologic Neoplasms/classification , Humans , Logistic Models , Microarray Analysis
2.
Saudi J Biol Sci ; 29(1): 583-594, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35002454

ABSTRACT

Every year about one million people die due to diseases transmitted by mosquitoes. The infection is transmitted to a person when an infected mosquito stings, injecting the saliva into the human body. The best possible way to prevent a mosquito-borne infection till date is to save the humans from exposure to mosquito bites. This study proposes a Machine Learning (ML) and Deep Learning based system to detect the presence of two critical disease spreading classes of mosquitoes such as the Aedes and Culex. The proposed system will effectively aid in epidemiology to design evidence-based policies and decisions by analyzing the risks and transmission. The study proposes an effective methodology for the classification of mosquitoes using ML and CNN models. The novel RIFS has been introduced which integrates two types of feature selection techniques - the ROI-based image filtering and the wrappers-based FFS technique. Comparative analysis of various ML and deep learning models has been performed to determine the most appropriate model applicable based on their performance metrics as well as computational needs. Results prove that ETC outperformed among the all applied ML model by providing 0.992 accuracy while VVG16 has outperformed other CNN models by giving 0.986 of accuracy.

3.
PeerJ Comput Sci ; 7: e745, 2021.
Article in English | MEDLINE | ID: mdl-34805502

ABSTRACT

The spread of altered media in the form of fake videos, audios, and images, has been largely increased over the past few years. Advanced digital manipulation tools and techniques make it easier to generate fake content and post it on social media. In addition, tweets with deep fake content make their way to social platforms. The polarity of such tweets is significant to determine the sentiment of people about deep fakes. This paper presents a deep learning model to predict the polarity of deep fake tweets. For this purpose, a stacked bi-directional long short-term memory (SBi-LSTM) network is proposed to classify the sentiment of deep fake tweets. Several well-known machine learning classifiers are investigated as well such as support vector machine, logistic regression, Gaussian Naive Bayes, extra tree classifier, and AdaBoost classifier. These classifiers are utilized with term frequency-inverse document frequency and a bag of words feature extraction approaches. Besides, the performance of deep learning models is analyzed including long short-term memory network, gated recurrent unit, bi-direction LSTM, and convolutional neural network+LSTM. Experimental results indicate that the proposed SBi-LSTM outperforms both machine and deep learning models and achieves an accuracy of 0.92.

4.
PLoS One ; 16(2): e0245909, 2021.
Article in English | MEDLINE | ID: mdl-33630869

ABSTRACT

The spread of Covid-19 has resulted in worldwide health concerns. Social media is increasingly used to share news and opinions about it. A realistic assessment of the situation is necessary to utilize resources optimally and appropriately. In this research, we perform Covid-19 tweets sentiment analysis using a supervised machine learning approach. Identification of Covid-19 sentiments from tweets would allow informed decisions for better handling the current pandemic situation. The used dataset is extracted from Twitter using IDs as provided by the IEEE data port. Tweets are extracted by an in-house built crawler that uses the Tweepy library. The dataset is cleaned using the preprocessing techniques and sentiments are extracted using the TextBlob library. The contribution of this work is the performance evaluation of various machine learning classifiers using our proposed feature set. This set is formed by concatenating the bag-of-words and the term frequency-inverse document frequency. Tweets are classified as positive, neutral, or negative. Performance of classifiers is evaluated on the accuracy, precision, recall, and F1 score. For completeness, further investigation is made on the dataset using the Long Short-Term Memory (LSTM) architecture of the deep learning model. The results show that Extra Trees Classifiers outperform all other models by achieving a 0.93 accuracy score using our proposed concatenated features set. The LSTM achieves low accuracy as compared to machine learning classifiers. To demonstrate the effectiveness of our proposed feature set, the results are compared with the Vader sentiment analysis technique based on the GloVe feature extraction approach.


Subject(s)
COVID-19 , Social Media , Supervised Machine Learning , Deep Learning , Humans , Natural Language Processing , Pandemics , Public Opinion
SELECTION OF CITATIONS
SEARCH DETAIL
...