Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Structure ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38703776

ABSTRACT

Mesothelin (MSLN) is a cell-surface glycoprotein expressed at low levels on normal mesothelium but overexpressed in many cancers. Mesothelin has been implicated to play role/s in cell adhesion and multiple signaling pathways. Mucin-16/CA125 is an enormous cell-surface glycoprotein, also normally expressed on mesothelium and implicated in the progression and metastasis of several cancers, and directly binds mesothelin. However, the precise biological function/s of mesothelin and mucin-16/CA125 remain mysterious. We report protein engineering and recombinant production, qualitative and quantitative binding studies, and a crystal structure determination elucidating the molecular-level details governing recognition of mesothelin by mucin-16/CA125. The interface is small, consistent with the ∼micromolar binding constant and is free of glycan-mediated interactions. Sequence comparisons and modeling suggest that multiple mucin-16/CA125 modules can interact with mesothelin through comparable interactions, potentially generating a high degree of avidity at the cell surface to overcome the weak affinity, with implications for functioning and therapeutic interventions.

2.
Heliyon ; 10(7): e28583, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38586421

ABSTRACT

NKG2D and its ligands are critical regulators of protective immune responses controlling infections and cancer, defining a crucial immune signaling axis. Current therapeutic efforts targeting this axis almost exclusively aim at enhancing NKG2D-mediated effector functions. However, this axis can drive disease processes when dysregulated, in particular, driving stem-like cancer cell reprogramming and tumorigenesis through receptor/ligand self-stimulation on tumor cells. Despite complexities with its structure and biology, we developed multiple novel engineered proteins that functionally serve as axis-blocking NKG2D "decoys" and report biochemical, structural, in vitro, and in vivo evaluation of their functionality.

3.
Mol Ther ; 31(10): 2901-2913, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37550965

ABSTRACT

Hematopoietic stem cell (HSC) gene therapy is currently performed on CD34+ hematopoietic stem and progenitor cells containing less than 1% true HSCs and requiring a highly specialized infrastructure for cell manufacturing and transplantation. We have previously identified the CD34+CD90+ subset to be exclusively responsible for short- and long-term engraftment. However, purification and enrichment of this subset is laborious and expensive. HSC-specific delivery agents for the direct modification of rare HSCs are currently lacking. Here, we developed novel targeted viral vectors to specifically transduce CD90-expressing HSCs. Anti-CD90 single chain variable fragments (scFvs) were engineered onto measles- and VSV-G-pseudotyped lentiviral vectors that were knocked out for native targeting. We further developed a custom hydrodynamic titration methodology to assess the loading of surface-engineered capsids, measure antigen recognition of the scFv, and predict the performance on cells. Engineered vectors formed with minimal impairment in the functional titer, maintained their ability to fuse with the target cells, and showed highly specific recognition of CD90 on cells ex vivo. Most important, targeted vectors selectively transduced human HSCs with secondary colony-forming potential. Our novel HSC-targeted viral vectors have the potential to significantly enhance the feasibility of ex vivo gene therapy and pave the way for future in vivo applications.


Subject(s)
Hematopoietic Stem Cell Transplantation , Humans , Antigens, CD34/genetics , Genetic Therapy/methods , Genetic Vectors/genetics , Hematopoietic Stem Cells
4.
Front Immunol ; 14: 1170462, 2023.
Article in English | MEDLINE | ID: mdl-37207206

ABSTRACT

MHC class I "single-chain trimer" molecules, coupling MHC heavy chain, ß2-microglobulin, and a specific peptide into a single polypeptide chain, are widely used in research. To more fully understand caveats associated with this design that may affect its use for basic and translational studies, we evaluated a set of engineered single-chain trimers with combinations of stabilizing mutations across eight different classical and non-classical human class I alleles with 44 different peptides, including a novel human/murine chimeric design. While, overall, single-chain trimers accurately recapitulate native molecules, care was needed in selecting designs for studying peptides longer or shorter than 9-mers, as single-chain trimer design could affect peptide conformation. In the process, we observed that predictions of peptide binding were often discordant with experiment and that yields and stabilities varied widely with construct design. We also developed novel reagents to improve the crystallizability of these proteins and confirmed novel modes of peptide presentation.


Subject(s)
Histocompatibility Antigens Class I , Peptides , Humans , Mice , Animals , Histocompatibility Antigens Class I/genetics , Peptides/metabolism , Epitopes/chemistry
5.
Structure ; 31(1): 20-32.e5, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36513069

ABSTRACT

Opioid-related fatal overdoses have reached epidemic proportions. Because existing treatments for opioid use disorders offer limited long-term protection, accelerating the development of newer approaches is critical. Monoclonal antibodies (mAbs) are an emerging treatment strategy that targets and sequesters selected opioids in the bloodstream, reducing drug distribution across the blood-brain barrier, thus preventing or reversing opioid toxicity. We previously identified a series of murine mAbs with high affinity and selectivity for oxycodone, morphine, fentanyl, and nicotine. To determine their binding mechanism, we used X-ray crystallography to solve the structures of mAbs bound to their respective targets, to 2.2 Å resolution or higher. Structural analysis showed a critical convergent hydrogen bonding mode that is dependent on a glutamic acid residue in the mAbs' heavy chain and a tertiary amine of the ligand. Characterizing drug-mAb complexes represents a significant step toward rational antibody engineering and future manufacturing activities to support clinical evaluation.


Subject(s)
Analgesics, Opioid , Nicotine , Mice , Animals , Analgesics, Opioid/therapeutic use , Antibodies, Monoclonal/chemistry , Oxycodone/therapeutic use , Morphine/therapeutic use
6.
Sci Transl Med ; 14(645): eabn0402, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35584229

ABSTRACT

Cystine-dense peptides (CDPs) are a miniprotein class that can drug difficult targets with high affinity and low immunogenicity. Tools for their design, however, are not as developed as those for small-molecule and antibody drugs. CDPs have diverse taxonomic origins, but structural characterization is lacking. Here, we adapted Iterative Threading ASSEmbly Refinement (I-TASSER) and Rosetta protein modeling software for structural prediction of 4298 CDP scaffolds and performed in silico prescreening for CDP binders to targets of interest. Mammalian display screening of a library of docking-enriched, methionine and tyrosine scanned (DEMYS) CDPs against PD-L1 yielded binders from four distinct CDP scaffolds. One was affinity-matured, and cocrystallography yielded a high-affinity (KD = 202 pM) PD-L1-binding CDP that competes with PD-1 for PD-L1 binding. Its subsequent incorporation into a CD3-binding bispecific T cell engager produced a molecule with pM-range in vitro T cell killing potency and which substantially extends survival in two different xenograft tumor-bearing mouse models. Both in vitro and in vivo, the CDP-incorporating bispecific molecule outperformed a comparator antibody-based molecule. This CDP modeling and DEMYS technique can accelerate CDP therapeutic development.


Subject(s)
Antibodies, Bispecific , T-Lymphocytes , Animals , Humans , Mice , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , B7-H1 Antigen , CD3 Complex , Cystine , Disease Models, Animal , Mammals , Peptides
7.
J Clin Microbiol ; 59(10): e0052721, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34288726

ABSTRACT

Determinants of protective immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection require the development of well-standardized, reproducible antibody assays. This need has led to the emergence of a variety of neutralization assays. Head-to-head evaluation of different SARS-CoV-2 neutralization platforms could facilitate comparisons across studies and laboratories. Five neutralization assays were compared using 40 plasma samples from convalescent individuals with mild to moderate coronavirus disease 2019 (COVID-19): four cell-based systems using either live recombinant SARS-CoV-2 or pseudotyped viral particles created with lentivirus (LV) or vesicular stomatitis virus (VSV) packaging and one surrogate enzyme-linked immunosorbent assay (ELISA)-based test that measures inhibition of the spike protein receptor binding domain (RBD) binding its receptor human angiotensin converting enzyme 2 (hACE2). Vero cells, Vero E6 cells, HEK293T cells expressing hACE2, and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 were tested. All cell-based assays showed 50% neutralizing dilution (ND50) geometric mean titers (GMTs) that were highly correlated (Pearson r = 0.81 to 0.89) and ranged within 3.4-fold. The live virus assay and LV pseudovirus assays with HEK293T/hACE2 cells showed very similar mean titers, 141 and 178, respectively. ND50 titers positively correlated with plasma IgG targeting SARS-CoV-2 spike protein and RBD (r = 0.63 to 0.89), but moderately correlated with nucleoprotein IgG (r = 0.46 to 0.73). ND80 GMTs mirrored ND50 data and showed similar correlation between assays and with IgG concentrations. The VSV pseudovirus assay and LV pseudovirus assay with HEK293T/hACE2 cells in low- and high-throughput versions were calibrated against the WHO SARS-CoV-2 IgG standard. High concordance between the outcomes of cell-based assays with live and pseudotyped virions enables valid cross-study comparison using these platforms.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Chlorocebus aethiops , HEK293 Cells , Humans , Neutralization Tests , Spike Glycoprotein, Coronavirus/genetics , Vero Cells
8.
medRxiv ; 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33330875

ABSTRACT

Determinants of protective immunity against SARS-CoV-2 infection require the development of well-standardized, reproducible antibody assays to be utilized in concert with clinical trials to establish correlates of risk and protection. This need has led to the appearance of a variety of neutralization assays used by different laboratories and companies. Using plasma samples from COVID-19 convalescent individuals with mild-to-moderate disease from a localized outbreak in a single region of the western US, we compared three platforms for SARS-CoV-2 neutralization: assay with live SARS-CoV-2, pseudovirus assay utilizing lentiviral (LV) and vesicular stomatitis virus (VSV) packaging, and a surrogate ELISA test. Vero, Vero E6, HEK293T cells expressing human angiotensin converting enzyme 2 (hACE2), and TZM-bl cells expressing hACE2 and transmembrane serine protease 2 (TMPRSS2) were evaluated. Live-virus and LV-pseudovirus assay with HEK293T cells showed similar geometric mean titers (GMTs) ranging 141-178, but VSV-pseudovirus assay yielded significantly higher GMT (310 95%CI 211-454; p < 0.001). Fifty percent neutralizing dilution (ND50) titers from live-virus and all pseudovirus assay readouts were highly correlated (Pearson r = 0.81-0.89). ND50 titers positively correlated with plasma concentration of IgG against SARS-CoV-2 spike and receptor binding domain (RBD) ( r = 0.63-0.89), but moderately correlated with nucleoprotein IgG ( r = 0.46-0.73). There was a moderate positive correlation between age and spike (Spearman's rho=0.37, p=0.02), RBD (rho=0.39, p=0.013) and nucleoprotein IgG (rho=0.45, p=0.003). ND80 showed stronger correlation with age than ND50 (ND80 rho=0.51 (p=0.001), ND50 rho=0.28 (p=0.075)). Our data demonstrate high concordance between cell-based assays with live and pseudotyped virions.

9.
J Mol Biol ; 432(14): 3989-4009, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32304700

ABSTRACT

The impenetrability of the blood-brain barrier (BBB) to most conventional drugs impedes the treatment of central nervous system (CNS) disorders. Interventions for diseases like brain cancer, neurodegeneration, or age-associated inflammatory processes require varied approaches to CNS drug delivery. Cystine-dense peptides (CDPs) have drawn recent interest as drugs or drug-delivery vehicles. Found throughout the phylogenetic tree, often in drug-like roles, their size, stability, and protein interaction capabilities make CDPs an attractive mid-size biologic scaffold to complement conventional antibody-based drugs. Here, we describe the identification, maturation, characterization, and utilization of a CDP that binds to the transferrin receptor (TfR), a native receptor and BBB transporter for the iron chaperone transferrin. We developed variants with varying binding affinities (KD as low as 216 pM), co-crystallized it with the receptor, and confirmed murine cross-reactivity. It accumulates in the mouse CNS at ~25% of blood levels (CNS blood content is only ~1%-6%) and delivers neurotensin, an otherwise non-BBB-penetrant neuropeptide, at levels capable of modulating CREB signaling in the mouse brain. Our work highlights the utility of CDPs as a diverse, easy-to-screen scaffold family worthy of inclusion in modern drug discovery strategies, demonstrated by the discovery of a candidate CNS drug delivery vehicle ready for further optimization and preclinical development.


Subject(s)
Blood-Brain Barrier/drug effects , Central Nervous System Diseases/drug therapy , Drug Delivery Systems , Peptides/pharmacology , Animals , Antigens, CD/chemistry , Antigens, CD/drug effects , Antigens, CD/genetics , Antigens, CD/pharmacology , Central Nervous System/drug effects , Cystine/chemistry , Cystine/genetics , Humans , Inflammation/drug therapy , Inflammation/pathology , Mice , Neuropeptides/chemistry , Neuropeptides/pharmacology , Neurotensin/chemistry , Neurotensin/pharmacology , Peptides/chemistry , Protein Binding/drug effects , Receptors, Transferrin/chemistry , Receptors, Transferrin/drug effects , Receptors, Transferrin/genetics
10.
J Struct Biol X ; 2: 100008, 2019.
Article in English | MEDLINE | ID: mdl-32647813

ABSTRACT

Siderocalin/Lipocalin 2/Neutrophil Gelatinase Associated Lipocalin/24p3 is an innate immune system protein with bacteriostatic activity, acting by tightly binding and sequestering diverse catecholate and mixed-type ferric siderophores from enteric bacteria and mycobacteria. Bacterial virulence achieved through siderophore modifications, or utilization of alternate siderophores, can be explained by evasion of Siderocalin binding. Siderocalin has also been implicated in a wide variety of disease processes, though often in seemingly contradictory ways, and has been proposed to bind to a broader array of ligands beyond siderophores. Using structural, directed mutational, and binding studies, we have sought to rigorously test, and fully elucidate, the Siderocalin recognition mechanism. Several proposed ligands fail to meet rigorous binding criteria, including the bacterial siderophore pyochelin, the iron-chelating catecholamine hormone norepinephrine, and the bacterial second messenger cyclic diguanylate monophosphate. While possessing a remarkably rigid structure, in principle simplifying analyses of ligand recognition, understanding Scn recognition is complicated by the observed conformational and stoichiometric plasticity, and instability, of its bona fide siderophore ligands. Since the role of Siderocalin at the early host/pathogen interface is to compete for bacterial ferric siderophores, we also analyzed how bacterial siderophore binding proteins and enzymes alternately recognize siderophores that efficiently bind to, or evade, Siderocalin sequestration - including determining the crystal structure of Bacillus cereus YfiY bound to schizokinen. These studies combine to refine the potential physiological functions of Siderocalin by defining its multiplexed recognition mechanism.

11.
Nat Struct Mol Biol ; 25(3): 270-278, 2018 03.
Article in English | MEDLINE | ID: mdl-29483648

ABSTRACT

Peptides folded through interwoven disulfides display extreme biochemical properties and unique medicinal potential. However, their exploitation has been hampered by the limited amounts isolatable from natural sources and the expense of chemical synthesis. We developed reliable biological methods for high-throughput expression, screening and large-scale production of these peptides: 46 were successfully produced in multimilligram quantities, and >600 more were deemed expressible through stringent screening criteria. Many showed extreme resistance to temperature, proteolysis and/or reduction, and all displayed inhibitory activity against at least 1 of 20 ion channels tested, thus confirming their biological functionality. Crystal structures of 12 confirmed proper cystine topology and the utility of crystallography to study these molecules but also highlighted the need for rational classification. Previous categorization attempts have focused on limited subsets featuring distinct motifs. Here we present a global definition, classification and analysis of >700 structures of cystine-dense peptides, providing a unifying framework for these molecules.


Subject(s)
Cystine/chemistry , Peptides/chemistry , Amino Acid Sequence , Crystallography, X-Ray , HEK293 Cells , Humans , Ion Channels/antagonists & inhibitors , Models, Molecular , Peptide Biosynthesis , Peptides/classification , Peptides/pharmacology
12.
Nat Chem ; 9(9): 843-849, 2017 09.
Article in English | MEDLINE | ID: mdl-28837177

ABSTRACT

Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin-a mammalian metal transporter-in contrast to the negatively charged species obtained with neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.

13.
Nat Commun ; 7: 12973, 2016 10 31.
Article in English | MEDLINE | ID: mdl-27796299

ABSTRACT

Iron overload damages many organs. Unfortunately, therapeutic iron chelators also have undesired toxicity and may deliver iron to microbes. Here we show that a mutant form (K3Cys) of endogenous lipocalin 2 (LCN2) is filtered by the kidney but can bypass sites of megalin-dependent recapture, resulting in urinary excretion. Because K3Cys maintains recognition of its cognate ligand, the iron siderophore enterochelin, this protein can capture and transport iron even in the acidic conditions of urine. Mutant LCN2 strips iron from transferrin and citrate, and delivers it into the urine. In addition, it removes iron from iron overloaded mice, including models of acquired (iron-dextran or stored red blood cells) and primary (Hfe-/-) iron overload. In each case, the mutants reduce redox activity typical of non-transferrin-bound iron. In summary, we present a non-toxic strategy for iron chelation and urinary elimination, based on manipulating an endogenous protein:siderophore:iron clearance pathway.


Subject(s)
Iron Overload/metabolism , Iron/metabolism , Lipocalin-2/genetics , Lipocalin-2/physiology , Animals , Disease Models, Animal , Humans , Inflammation , Iron Chelating Agents , Iron Overload/genetics , Kidney/metabolism , Ligands , Mice , Mice, Transgenic , Mutation , Oxidation-Reduction , Protein Binding , Siderophores , Transferrin/metabolism
14.
Inorg Chem ; 55(22): 11930-11936, 2016 Nov 21.
Article in English | MEDLINE | ID: mdl-27802058

ABSTRACT

Targeted α therapy holds tremendous potential as a cancer treatment: it offers the possibility of delivering a highly cytotoxic dose to targeted cells while minimizing damage to surrounding healthy tissue. The metallic α-generating radioisotopes 225Ac and 227Th are promising radionuclides for therapeutic use, provided adequate chelation and targeting. Here we demonstrate a new chelating platform composed of a multidentate high-affinity oxygen-donating ligand 3,4,3-LI(CAM) bound to the mammalian protein siderocalin. Respective stability constants log ß110 = 29.65 ± 0.65, 57.26 ± 0.20, and 47.71 ± 0.08, determined for the EuIII (a lanthanide surrogate for AcIII), ZrIV, and ThIV complexes of 3,4,3-LI(CAM) through spectrophotometric titrations, reveal this ligand to be one of the most powerful chelators for both trivalent and tetravalent metal ions at physiological pH. The resulting metal-ligand complexes are also recognized with extremely high affinity by the siderophore-binding protein siderocalin, with dissociation constants below 40 nM and tight electrostatic interactions, as evidenced by X-ray structures of the protein:ligand:metal adducts with ZrIV and ThIV. Finally, differences in biodistribution profiles between free and siderocalin-bound 238PuIV-3,4,3-LI(CAM) complexes confirm in vivo stability of the protein construct. The siderocalin:3,4,3-LI(CAM) assembly can therefore serve as a "lock" to consolidate binding to the therapeutic 225Ac and 227Th isotopes or to the positron emission tomography emitter 89Zr, independent of metal valence state.


Subject(s)
Chelating Agents/chemistry , Coordination Complexes/chemistry , Proteins/chemistry , Radiotherapy/methods , Thorium/chemistry , Zirconium/chemistry , Animals , Coordination Complexes/pharmacokinetics , Female , Ligands , Mice , Models, Chemical , Tissue Distribution
15.
Proc Natl Acad Sci U S A ; 112(33): 10342-7, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26240330

ABSTRACT

Synthetic radionuclides, such as the transuranic actinides plutonium, americium, and curium, present severe health threats as contaminants, and understanding the scope of the biochemical interactions involved in actinide transport is instrumental in managing human contamination. Here we show that siderocalin, a mammalian siderophore-binding protein from the lipocalin family, specifically binds lanthanide and actinide complexes through molecular recognition of the ligands chelating the metal ions. Using crystallography, we structurally characterized the resulting siderocalin-transuranic actinide complexes, providing unprecedented insights into the biological coordination of heavy radioelements. In controlled in vitro assays, we found that intracellular plutonium uptake can occur through siderocalin-mediated endocytosis. We also demonstrated that siderocalin can act as a synergistic antenna to sensitize the luminescence of trivalent lanthanide and actinide ions in ternary protein-ligand complexes, dramatically increasing the brightness and efficiency of intramolecular energy transfer processes that give rise to metal luminescence. Our results identify siderocalin as a potential player in the biological trafficking of f elements, but through a secondary ligand-based metal sequestration mechanism. Beyond elucidating contamination pathways, this work is a starting point for the design of two-stage biomimetic platforms for photoluminescence, separation, and transport applications.


Subject(s)
Actinoid Series Elements/chemistry , Carrier Proteins/chemistry , Carrier Proteins/physiology , Proteins/chemistry , Actinoid Series Elements/pharmacokinetics , Chelating Agents/chemistry , Crystallography, X-Ray , Humans , Hydrogen-Ion Concentration , Ions , Kinetics , Lanthanoid Series Elements , Ligands , Lipocalin-2 , Luminescence , Metals/chemistry , Molecular Conformation , Nuclear Power Plants , Photochemistry , Protein Binding , Radioactive Hazard Release , Spectrophotometry , Static Electricity , X-Ray Diffraction
16.
PLoS Pathog ; 9(9): e1003639, 2013.
Article in English | MEDLINE | ID: mdl-24086134

ABSTRACT

The broadly-neutralizing anti-HIV antibody 4E10 recognizes an epitope in the membrane-proximal external region of the HIV envelope protein gp41. Previous attempts to elicit 4E10 by vaccination with envelope-derived or reverse-engineered immunogens have failed. It was presumed that the ontogeny of 4E10-equivalent responses was blocked by inherent autoreactivity and exceptional polyreactivity. We generated 4E10 heavy-chain knock-in mice, which displayed significant B cell dysregulation, consistent with recognition of autoantigen/s by 4E10 and the presumption that tolerance mechanisms may hinder the elicitation of 4E10 or 4E10-equivalent responses. Previously proposed candidate 4E10 autoantigens include the mitochondrial lipid cardiolipin and a nuclear splicing factor, 3B3. However, using carefully-controlled assays, 4E10 bound only weakly to cardiolipin-containing liposomes, but also bound negatively-charged, non-cardiolipin-containing liposomes comparably poorly. 4E10/liposome binding was predominantly mediated by electrostatic interactions rather than presumed hydrophobic interactions. The crystal structure of 4E10 free of bound ligands showed a dramatic restructuring of the combining site, occluding the HIV epitope binding site and revealing profound flexibility, but creating an electropositive pocket consistent with non-specific binding of phospholipid headgroups. These results strongly suggested that antigens other than cardiolipin mediate 4E10 autoreactivity. Using a synthetic peptide library spanning the human proteome, we determined that 4E10 displays limited and focused, but unexceptional, polyspecificity. We also identified a novel autoepitope shared by three ER-resident inositol trisphosphate receptors, validated through binding studies and immunohistochemistry. Tissue staining with 4E10 demonstrated reactivity consistent with the type 1 inositol trisphosphate receptor as the most likely candidate autoantigen, but is inconsistent with splicing factor 3B3. These results demonstrate that 4E10 recognition of liposomes competes with MPER recognition and that HIV antigen and autoepitope recognition may be distinct enough to permit eliciting 4E10-like antibodies, evading autoimmunity through directed engineering. However, 4E10 combining site flexibility, exceptional for a highly-matured antibody, may preclude eliciting 4E10 by conventional immunization strategies.


Subject(s)
Antibodies, Monoclonal/immunology , Autoantibodies/immunology , Autoantigens/immunology , Complementarity Determining Regions/immunology , Epitopes/immunology , HIV Antibodies/immunology , HIV-1/immunology , Immunoglobulin Heavy Chains/immunology , Inositol 1,4,5-Trisphosphate Receptors/immunology , Animals , Antibodies, Monoclonal/genetics , Autoantibodies/genetics , Autoantigens/genetics , Broadly Neutralizing Antibodies , Cardiolipins/genetics , Cardiolipins/immunology , Complementarity Determining Regions/genetics , Epitopes/genetics , HIV Antibodies/genetics , Humans , Immunoglobulin Heavy Chains/genetics , Inositol 1,4,5-Trisphosphate Receptors/genetics , Mice , Mice, Transgenic , Proteome/genetics , Proteome/immunology
17.
Methods Mol Biol ; 252: 303-11, 2004.
Article in English | MEDLINE | ID: mdl-15017059

ABSTRACT

Conditions and techniques that result in successful crystallization differ from RNA to RNA. However, there are some general principles that facilitate crystallization of most RNAs. Three procedures that were instrumental in obtaining well-ordered crystals of the hairpin ribozyme are described in this chapter. These are: i) the design of a series of candidate crystallization constructs; ii) the evaluation of conditions to obtain monodisperse RNA; and iii) the use of seeding techniques to separate nucleation and growth events during crystallization. These procedures can be usefully adapted for the crystallization of other RNAs.


Subject(s)
RNA, Catalytic/chemistry , Binding Sites , Crystallization , Crystallography, X-Ray/methods , Nucleic Acid Conformation , Polymerase Chain Reaction/methods , RNA, Catalytic/biosynthesis , Taq Polymerase
18.
Acta Crystallogr D Biol Crystallogr ; 59(Pt 8): 1521-4, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12876372

ABSTRACT

The human U1A RNA-binding domain (RBD1) adopts one of the most common protein folds, the RNA-recognition motif, and is a paradigm for understanding RNA-protein interactions. A 2.8 A resolution structure of the unbound RBD1 has previously been determined [Nagai et al. (1990). Nature (London), 348, 515-520] and revealed a well defined alpha/beta core with disordered termini. Using a longer construct, a 1.8 A resolution structure of the unbound domain was determined that reveals an ordered C-terminal helix. The presence of this helix is consistent with a solution structure of the free domain [Avis et al. (1996). J. Mol. Biol. 257, 398-411]; however, in the solution structure the helix occludes the RNA-binding surface. In the present structure, the helix occupies a position similar to that seen in a 1.9 A resolution RNA-RBD1 complex structure [Oubridge et al. (1994). Nature (London), 372, 432-438]. The crystals in this study were grown from 2.2 M sodium malonate. It is possible that the high salt concentration helps to orient the C-terminal helix in the RNA-bound conformation by strengthening hydrophobic interactions between the buried face of the helix and the alpha/beta core of the protein. Alternatively, the malonate (several molecules of which are bound in the vicinity of the RNA-binding surface) may mimic RNA.


Subject(s)
RNA-Binding Proteins , Ribonucleoprotein, U1 Small Nuclear/chemistry , Amino Acid Motifs , Crystallization , Crystallography, X-Ray , Escherichia coli/enzymology , Humans , Models, Molecular , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , RNA/chemistry , Recombinant Proteins/chemistry
19.
Science ; 298(5597): 1421-4, 2002 Nov 15.
Article in English | MEDLINE | ID: mdl-12376595

ABSTRACT

The hairpin ribozyme catalyzes sequence-specific cleavage of RNA through transesterification of the scissile phosphate. Vanadate has previously been used as a transition state mimic of protein enzymes that catalyze the same reaction. Comparison of the 2.2 angstrom resolution structure of a vanadate-hairpin ribozyme complex with structures of precursor and product complexes reveals a rigid active site that makes more hydrogen bonds to the transition state than to the precursor or product. Because of the paucity of RNA functional groups capable of general acid-base or electrostatic catalysis, transition state stabilization is likely to be an important catalytic strategy for ribozymes.


Subject(s)
RNA, Catalytic/chemistry , RNA, Catalytic/metabolism , Binding Sites , Catalysis , Crystallization , Crystallography, X-Ray , Hydrogen Bonding , Ligands , Models, Molecular , Nucleic Acid Conformation , Oxygen/chemistry , Oxygen/metabolism , Vanadates/chemistry , Vanadates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...