Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Curr Drug Metab ; 23(11): 897-904, 2022.
Article in English | MEDLINE | ID: mdl-36017834

ABSTRACT

BACKGROUND: Curcumin is a polyphenolic compound derived from rhizomes of Curcuma longa, the golden spice. Curcumin has drawn much attention in recent years of biomedical research owing to its wide variety of biologic and pharmacologic actions. It exerts antiproliferative, antifibrogenic, anti-inflammatory, and antioxidative effects, among various imperative pharmacologic actions. In spite of its well-documented efficacies against numerous disease conditions, the limited systemic bioavailability of curcumin is a continuing concern. Perhaps, the poor bioavailability of curcumin may have curtailed its significant development from kitchen to clinic as a potential therapeutic agent. Subsequently, there have been a considerable number of studies over decades researching the scientific basis of curcumin's reduced bioavailability and eventually improvement of its bioavailability employing a variety of therapeutic approaches, for instance, in combination with piperine, the bio-active constituent of black pepper. Piperine has remarkable potential to modulate the functional activity of metabolic enzymes and drug transporters, and thus there has been a great interest in the therapeutic application of this widely used spice as alternative medicine and bioavailability enhancer. Growing body of evidence supports the synergistic potential of curcumin against numerous pathologic conditions when administered with piperine. CONCLUSION: In light of current challenges, the major concern pertaining to poor systemic bioavailability of curcumin, its improvement, especially in combination with piperine, and the necessity of additional research in this setting are together described in this review. Besides, the recent advances in the potential therapeutic rationale and efficacy of curcumin-piperine combination, a promising duo, against various pathologic conditions are delineated.


Subject(s)
Alkaloids , Curcumin , Humans , Curcumin/pharmacology , Biological Availability , Polyunsaturated Alkamides
2.
Korean J Physiol Pharmacol ; 20(4): 333-40, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27382349

ABSTRACT

Edaravone, a synthetic-free radical scavenger, has been reported to reduce ischemia-reperfusion-induced renal injury by improving tubular cell function, and lowering serum creatinine and renal vascular resistance. The present study investigated the effect of edaravone in diabetes mellitus-induced nephropathy in rats. A single administration of streptozotocin (STZ, 55 mg/kg, i.p.) was employed to induce diabetes mellitus in rats. The STZ-administered diabetic rats were allowed for 10 weeks to develop nephropathy. Mean body weight, lipid alteration, renal functional and histopathology were analysed. Diabetic rats developed nephropathy as evidenced by a significant increase in serum creatinine and urea, and marked renal histopathological abnormalities like glomerulosclerosis and tubular cell degeneration. The kidney weight to body weight ratio was increased. Moreover, diabetic rats showed lipid alteration as evidenced by a signifi cant increase in serum triglycerides and decrease in serum high-density lipoproteins. Edaravone (10 mg/kg, i.p., last 4-weeks) treatment markedly prevented the development of nephropathy in diabetic rats by reducing serum creatinine and urea and preventing renal structural abnormalities. In addition, its treatment, without significantly altering the elevated glucose level in diabetic rats, prevented diabetes mellitus-induced lipid alteration by reducing serum triglycerides and increasing serum high-density lipoproteins. Interestingly, the renoprotective effect of edaravone was comparable to that of lisinopril (5 mg/kg, p.o, 4 weeks, standard drug). Edaravone prevented renal structural and functional abnormalities and lipid alteration associated with experimental diabetes mellitus. Edaravone has a potential to prevent nephropathy without showing an anti-diabetic action, implicating its direct renoprotection in diabetic rats.

3.
Pharmacol Res ; 90: 36-47, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25263930

ABSTRACT

Low-doses of fenofibrate and dipyridamole have pleiotropic renoprotective actions in diabetic rats. This study investigated their combined effect relative to their individual treatments and lisinopril in rats with diabetic nephropathy. Streptozotocin (55mg/kg, i.p., once)-administered diabetic rats were allowed for 10 weeks to develop nephropathy. Diabetic rats after 10 weeks developed nephropathy with discernible renal structural and functional changes as assessed in terms of increase in kidney weight to body weight ratio (KW/BW), and elevations of serum creatinine, urea and uric acid, which accompanied with elevated serum triglycerides and decreased high-density lipoproteins. Hematoxylin-eosin, periodic acid Schiff and Masson trichrome staining confirmed renal pathological changes in diabetic rats that included glomerular capsular wall distortion, mesangial cell expansion, glomerular microvascular condensation, tubular damage and degeneration and fibrosis. Low-dose fenofibrate (30mg/kg, p.o., 4 weeks) and low-dose dipyridamole (20mg/kg, p.o., 4 weeks) treatment either alone or in combination considerably reduced renal structural and functional abnormalities in diabetic rats, but without affecting the elevated glucose level. Fenofibrate, but not dipyridamole, significantly prevented the lipid alteration and importantly the uric acid elevation in diabetic rats. Lisinopril (5mg/kg, p.o., 4 weeks, reference compound), prevented the hyperglycemia, lipid alteration and development of diabetic nephropathy. Lipid alteration and uric acid elevation, besides hyperglycemia, could play key roles in the development of nephropathy. Low-doses of fenofibrate and dipyridamole treatment either alone or in combination markedly prevented the diabetes-induced nephropathy. Their combination was as effective as to their individual treatment, but not superior in preventing the development of diabetic nephropathy.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/prevention & control , Dipyridamole/therapeutic use , Fenofibrate/therapeutic use , Protective Agents/therapeutic use , Animals , Blood Glucose/drug effects , Cholesterol/blood , Creatinine/blood , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/blood , Diabetic Nephropathies/pathology , Dipyridamole/pharmacology , Drug Therapy, Combination , Fenofibrate/pharmacology , Kidney/drug effects , Kidney/pathology , Lipoproteins, HDL/blood , Lisinopril/pharmacology , Lisinopril/therapeutic use , Male , Organ Size/drug effects , Protective Agents/pharmacology , Rats, Sprague-Dawley , Triglycerides/blood , Urea/blood , Uric Acid/blood
4.
AAPS PharmSciTech ; 12(1): 28-34, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21161459

ABSTRACT

Microspheres of tramadol hydrochloride (TM) for oral delivery were prepared by complex coacervation method without the use of chemical cross-linking agents such as glutaraldehyde to avoid the toxic reactions and other undesirable effects of the chemical cross-linking agents. Alternatively, ionotropic gelation was employed by using sodium-tripolyphosphate as cross-linking agent. Chitosan and gelatin B were used as polymer and copolymer, respectively. All the prepared microspheres were subjected to various physicochemical studies, such as drug-polymer compatibility by thin layer chromatography (TLC) and Fourier transform infrared (FTIR) spectroscopy, surface morphology by scanning electron microscopy, frequency distribution, drug entrapment efficiency, in vitro drug release characteristics and release kinetics. The physical state of drug in the microspheres was determined by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). TLC and FTIR studies indicated no drug-polymer incompatibility. All the microspheres showed initial burst release followed by a fickian diffusion mechanism. DSC and XRD analysis indicated that the TM trapped in the microspheres existed in an amorphous or disordered-crystalline status in the polymer matrix. From the preliminary trials, it was observed that it may be possible to formulate TM microspheres by using biodegradable natural polymers such as chitosan and gelatin B to overcome the drawbacks of TM and to increase the patient compliance.


Subject(s)
Analgesics, Opioid/chemistry , Analgesics, Opioid/pharmacokinetics , Chitosan/chemistry , Gelatin/chemistry , Tramadol/chemistry , Tramadol/pharmacokinetics , Calorimetry, Differential Scanning , Cross-Linking Reagents/chemistry , Diffusion , Drug Carriers/chemistry , Humans , In Vitro Techniques , Microscopy, Electron, Scanning , Microspheres , Polyphosphates/chemistry , Spectroscopy, Fourier Transform Infrared
5.
Sci Pharm ; 78(1): 79-92, 2010.
Article in English | MEDLINE | ID: mdl-21179371

ABSTRACT

Microspheres (MS) of Ketorolac Tromethamine (KT) for oral delivery were prepared by complex coacervation (method-1) and simple coacervation (method-2) methods without the use of chemical crossâlinking agent (glutaraldehyde) to avoid the toxic reactions and other undesirable effects of the chemical cross-linking agents. Alternatively, ionotropic gelation was employed by using sodium-tripolyphosphate (Na-TPP) as cross linking agent. Chitosan and gelatin B were used as polymer and copolymer respectively. All the prepared microspheres were subjected to various physico-chemical studies, such as drug-polymer compatibility by Thin Layer Chromatography (TLC) and Fourier Transform Infra Red Spectroscopy (FTIR), surface morphology by Scanning Electron Microscopy (SEM), frequency distribution, encapsulation efficiency, in-vitro drug release characteristics and release kinetics. The physical state of drug in the microspheres was determined by Differential Scanning Calorimetry (DSC) and X-ray powder Diffractometry (XRD). TLC and FTIR studies indicated no drug-polymer incompatibility. All the MS showed release of drug by a fickian diffusion mechanism. DSC and XRD analysis indicated that the KT trapped in the microspheres existed in an amorphous or disordered-crystalline status in the polymer matrix. It is possible to design a controlled drug delivery system for the prolonged release of KT, improving therapy by possible reduction of time intervals between administrations.

6.
Acta Pharm ; 59(1): 97-106, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19304562

ABSTRACT

A series of novel 4-(3-ethylphenyl)-1-substituted-4H-[1,2,4] triazolo[4,3-a]quinazolin-5-ones (4a-j) were synthesized by the cyclization of 3-(3-ethylphenyl)-2-hydrazino-3H-quinazolin-4-one (3) with various one-carbon donors. The starting material, compound 3, was synthesized from 3-ethyl aniline by a new innovative route with improved yield. When tested for their in vivo H1-antihistaminic activity on conscious guinea pigs, all test compounds protected the animals from histamine induced bronchospasm significantly. Compound 4-(3-ethylphenyl)-1-methyl-4H - [1,2,4]triazolo[4,3-a]quinazolin-5-one (4b) emerged as the most active compound of the series and it is more potent (74.6 % protection) compared to the reference standard chlorpheniramine maleate (71 % protection). Compound 4b shows negligible sedation (10 %) compared to chlorpheniramine maleate (30 %). Therefore compound 4b can serve as the leading compound for further development of a new class of H1-antihistamines.


Subject(s)
Bronchial Spasm/prevention & control , Histamine H1 Antagonists/pharmacology , Quinazolines/pharmacology , Animals , Bronchial Spasm/etiology , Chlorpheniramine/adverse effects , Chlorpheniramine/pharmacology , Guinea Pigs , Histamine , Histamine H1 Antagonists/adverse effects , Histamine H1 Antagonists/chemical synthesis , Male , Mice , Motor Activity/drug effects , Quinazolines/adverse effects , Quinazolines/chemical synthesis , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...