Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 32(7): 2113-2129, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38788710

ABSTRACT

Sepsis-associated encephalopathy (SAE) is a frequent complication of severe systemic infection resulting in delirium, premature death, and long-term cognitive impairment. We closely mimicked SAE in a murine peritoneal contamination and infection (PCI) model. We found long-lasting synaptic pathology in the hippocampus including defective long-term synaptic plasticity, reduction of mature neuronal dendritic spines, and severely affected excitatory neurotransmission. Genes related to synaptic signaling, including the gene for activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and members of the transcription-regulatory EGR gene family, were downregulated. At the protein level, ARC expression and mitogen-activated protein kinase signaling in the brain were affected. For targeted rescue we used adeno-associated virus-mediated overexpression of ARC in the hippocampus in vivo. This recovered defective synaptic plasticity and improved memory dysfunction. Using the enriched environment paradigm as a non-invasive rescue intervention, we found improvement of defective long-term potentiation, memory, and anxiety. The beneficial effects of an enriched environment were accompanied by an increase in brain-derived neurotrophic factor (BDNF) and ARC expression in the hippocampus, suggesting that activation of the BDNF-TrkB pathway leads to restoration of the PCI-induced reduction of ARC. Collectively, our findings identify synaptic pathomechanisms underlying SAE and provide a conceptual approach to target SAE-induced synaptic dysfunction with potential therapeutic applications to patients with SAE.


Subject(s)
Brain-Derived Neurotrophic Factor , Cognitive Dysfunction , Cytoskeletal Proteins , Disease Models, Animal , Hippocampus , Neuronal Plasticity , Sepsis-Associated Encephalopathy , Animals , Mice , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/therapy , Cognitive Dysfunction/genetics , Sepsis-Associated Encephalopathy/metabolism , Sepsis-Associated Encephalopathy/etiology , Sepsis-Associated Encephalopathy/therapy , Sepsis-Associated Encephalopathy/genetics , Hippocampus/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Dependovirus/genetics , Male , Long-Term Potentiation , Receptor, trkB/metabolism , Receptor, trkB/genetics , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...