Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 806(Pt 2): 150456, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34607100

ABSTRACT

Measurements of the natural radiocarbon content of methane (14C-CH4) dissolved in seawater and freshwater have been used to investigate sources and dynamics of methane. However, during investigations along the Atlantic, Pacific, and Arctic Ocean Margins of the United States, as well as in the North American Great Lakes, some samples revealed highly elevated 14C-CH4 values, as much as 4-5 times above contemporary atmospheric 14C-CH4 levels. Natural production of the 14CH4 isotopologue is too low to cause these observations nor can it explain the variations in location and depth. Numerous lab and field validation tests and blanks, as well as the relatively small number of samples that display these elevated values, all suggest that these signals are not derived from an unknown procedural issue. Here we suggest that the byproducts of nuclear power generation include localized discharges of the 14CH4 isotopologue into marine and aquatic environments, severely altering the measured 14C-CH4 isotopic signals. Since several of our sample sites are distant from on-land nuclear powerplants, we conduct further calculations concluding that the most elevated anomalies in 14C-CH4 likely originate with discharge from nuclear-powered vessels.


Subject(s)
Lakes , Methane , Arctic Regions , Energy-Generating Resources , Seawater
2.
Chem Soc Rev ; 49(15): 5225-5309, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32567615

ABSTRACT

Gas hydrates have received considerable attention due to their important role in flow assurance for the oil and gas industry, their extensive natural occurrence on Earth and extraterrestrial planets, and their significant applications in sustainable technologies including but not limited to gas and energy storage, gas separation, and water desalination. Given not only their inherent structural flexibility depending on the type of guest gas molecules and formation conditions, but also the synthetic effects of a wide range of chemical additives on their properties, these variabilities could be exploited to optimise the role of gas hydrates. This includes increasing their industrial applications, understanding and utilising their role in Nature, identifying potential methods for safely extracting natural gases stored in naturally occurring hydrates within the Earth, and for developing green technologies. This review summarizes the different properties of gas hydrates as well as their formation and dissociation kinetics and then reviews the fast-growing literature reporting their role and applications in the aforementioned fields, mainly concentrating on advances during the last decade. Challenges, limitations, and future perspectives of each field are briefly discussed. The overall objective of this review is to provide readers with an extensive overview of gas hydrates that we hope will stimulate further work on this riveting field.

3.
Sci Adv ; 4(1): eaao4842, 2018 01.
Article in English | MEDLINE | ID: mdl-29349299

ABSTRACT

In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 ± 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbon-sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere.

4.
Proc Natl Acad Sci U S A ; 114(21): 5355-5360, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28484018

ABSTRACT

Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 106 tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (<100 m water depth), methane released from the seafloor may reach the atmosphere and potentially amplify global warming. On the other hand, biological uptake of carbon dioxide (CO2) has the potential to offset the positive warming potential of emitted methane, a process that has not received detailed consideration for these settings. Continuous sea-air gas flux data collected over a shallow ebullitive methane seep field on the Svalbard margin reveal atmospheric CO2 uptake rates (-33,300 ± 7,900 µmol m-2⋅d-1) twice that of surrounding waters and ∼1,900 times greater than the diffusive sea-air methane efflux (17.3 ± 4.8 µmol m-2⋅d-1). The negative radiative forcing expected from this CO2 uptake is up to 231 times greater than the positive radiative forcing from the methane emissions. Surface water characteristics (e.g., high dissolved oxygen, high pH, and enrichment of 13C in CO2) indicate that upwelling of cold, nutrient-rich water from near the seafloor accompanies methane emissions and stimulates CO2 consumption by photosynthesizing phytoplankton. These findings challenge the widely held perception that areas characterized by shallow-water methane seeps and/or strongly elevated sea-air methane flux always increase the global atmospheric greenhouse gas burden.

5.
PLoS One ; 10(10): e0139904, 2015.
Article in English | MEDLINE | ID: mdl-26509818

ABSTRACT

The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichos and the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial exploration revealed the NEUS region to be both geologically dynamic and biologically diverse, further research into the abiotic conditions and the biotic interactions that influence species abundance and distribution is needed.


Subject(s)
Ecosystem , Animals , Anthozoa , Biodiversity , Coral Reefs , New England
SELECTION OF CITATIONS
SEARCH DETAIL
...