Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 24(17): e202300539, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37655959

ABSTRACT

The front cover artwork is provided by the groups of Prof. Dr. Hans-Peter Steinrück and Prof. Dr. Norbert Jux at the Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg. The image shows a mixture of six 2H-tetrakis-(3, 5-di-tert-butyl-phenyl)(x)benzoporphyrins (2H-diTTBP(x)BPs, x = 0, 1, 2-cis, 2-trans, 3, or 4) molecules forming a porous square structure on Ag(111) as observed in scanning tunneling microscopy (STM) at room temperature. Read the full text of the Research Article at 10.1002/cphc.202300355.

2.
Chemphyschem ; 24(17): e202300355, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37341973

ABSTRACT

We investigated the adsorption behavior of a mixture of six 2H-tetrakis-(3, 5-di-tert-butylphenyl)(x)benzoporphyrins (2H-diTTBP(x)BPs, x=0, 1, 2-cis, 2-trans, 3, and 4) on Ag(111), Cu(111) and Cu(110) at room temperature by scanning tunneling microscopy (STM) under ultra-high vacuum conditions. On Ag(111), we observe an ordered two-dimensional square phase, which is stable up to 400 K. On Cu(111), the same square phase coexists with a stripe phase, which disappears at 400 K. In contrast, on Cu(110), 2H-diTTBP(x)BPs adsorb as immobile isolated molecules or dispersed short chains along the [1 1 ‾ ${\bar{1}}$ 0] substrate direction, which remain intact up to 450 K. The stabilization of the 2D supramolecular structures on Ag(111) and Cu(111), and of the 1D short chains on Cu(110) is attributed to van der Waals interactions between the tert-butyl and phenyl groups of neighboring molecules. From high-resolution STM, we can assign all six 2H-diTTBP(x)BPs within the ordered structures. Moreover, we deduce a crown shape quadratic conformation on Ag(111) and Cu(111), an additional saddle-shape on Cu(111), and an inverted structure and a quadratic appearance on Cu(110). The different conformations are attributed to the different degree of interaction of the iminic nitrogen atoms of the isoindole and pyrrole groups with the substrate atoms.

3.
Chemistry ; 26(53): 12180-12187, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32578918

ABSTRACT

Geodesic nitrogen-containing graphene fragments are interesting candidates for various material applications, but the available synthetic protocols, which need to overcome intrinsic strain energy during the formation of the bowl-shaped skeletons, are often incompatible with heteroatom-embedded structures. Through this mass spectrometry-based gas-phase study, we show by means of collision-induced dissociation experiments and supported by density functional theory calculations, the first evidence for the formation of a porphyrin-embedded conical nanocarbon. The influences of metalation and functionalization of the used tetrabenzoporphyrins have been investigated, which revealed different cyclization efficiencies, different ionization possibilities, and a variation of the dissociation pathway. Our results suggest a stepwise process for HF elimination from the fjord region, which supports a selective pathway towards bent nitrogen-containing graphene fragments.

4.
J Org Chem ; 85(12): 7781-7792, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32408737

ABSTRACT

Within the past decade, tetraaryltetrabenzoporphyrins (TATBPs) have gained rising attention due to their potential in various fields of materials science and medicinal chemistry. However, this class of compounds still lacks in structural diversity, especially in the case of low-symmetrical compounds. Herein, mixed condensations were utilized to generate TATBPs with different substituents either in the meso-positions or the periphery of the macrocycle with total yields of 55-58%. The separation of crude mixtures was achieved by feasible chromatographic purification. The influence of symmetry on the electronic properties of TATBPs was studied by optical spectroscopy, electrochemistry, and X-ray diffraction.

5.
Chemistry ; 26(15): 3193, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-32096576

ABSTRACT

Invited for the cover of this issue are the groups of Lungerich and Jux at the Friedrich-Alexander University Erlangen-Nuernberg. The image depicts the synthetic feasibility with a "TATBP tuning shop", which shows the change of the four meso aryl substituents to modify the performance of the molecule. Read the full text of the article at 10.1002/chem.201904718.

6.
Chemphyschem ; 21(5): 423-427, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31808603

ABSTRACT

The adsorption behavior and the mobility of 2H-Tetranaphthylporphyrin (2HTNP) on Cu(111) was investigated by scanning tunneling microscopy (STM) at room temperature (RT). The molecules adsorb, like the structurally related 2HTPP, in the "inverted" structure with the naphthyl plane restricted to an orientation parallel to the Cu surface. The orientation of the four naphthyl groups yields altogether 16 possible conformations. Due to the existence of rotamer pairs, 10 different appearances are expected on the surface, and all of them are identified by STM at RT. Most interestingly, the orientation of the naphthyl groups significantly influences the diffusion behavior of the molecules on Cu(111). We identify three different groups of conformers, which are either immobile, medium or fast diffusing at RT. The mobility seems to decrease with increasing size of the footprint of the conformers on the surface.

7.
Chemistry ; 26(15): 3287-3296, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-31846109

ABSTRACT

Tetraaryltetrabenzoporphyrins (TATBPs) show, due to their optoelectronic properties, rising potential as dyes in various fields of physical and biomedical sciences. However, unlike in the case of porphyrins, the potential structural diversity of TATBPs has been explored only to little extent, owed mainly to synthetic hurdles. Herein, we prepared a comprehensive library of 30 TATBPs and investigated their fundamental properties. We elucidated structural properties by X-ray crystallography and found explanations for physical properties such as solubility. Fundamental electronic aspects were studied by optical spectroscopy as well as by electrochemistry and brought in context to the stability of the molecules. Finally, we were able to develop a universal synthetic protocol, utilizing a readily established isoindole synthon, which gives TATBPs in high yields, regardless of the nature of the used arylaldehyde and without meticulous chromatographic purifications steps. This work serves as point of orientation for scientists, that aim to utilize these molecules in materials, nanotechnological, and biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...