Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 342(3): 642-53, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22637724

ABSTRACT

The Kv1.3 channel is a recognized target for pharmaceutical development to treat autoimmune diseases and organ rejection. ShK-186, a specific peptide inhibitor of Kv1.3, has shown promise in animal models of multiple sclerosis and rheumatoid arthritis. Here, we describe the pharmacokinetic-pharmacodynamic relationship for ShK-186 in rats and monkeys. The pharmacokinetic profile of ShK-186 was evaluated with a validated high-performance liquid chromatography-tandem mass spectrometry method to measure the peptide's concentration in plasma. These results were compared with single-photon emission computed tomography/computed tomography data collected with an ¹¹¹In-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugate of ShK-186 to assess whole-blood pharmacokinetic parameters as well as the peptide's absorption, distribution, and excretion. Analysis of these data support a model wherein ShK-186 is absorbed slowly from the injection site, resulting in blood concentrations above the Kv1.3 channel-blocking IC50 value for up to 7 days in monkeys. Pharmacodynamic studies on human peripheral blood mononuclear cells showed that brief exposure to ShK-186 resulted in sustained suppression of cytokine responses and may contribute to prolonged drug effects. In delayed-type hypersensitivity, chronic relapsing-remitting experimental autoimmune encephalomyelitis, and pristane-induced arthritis rat models, a single dose of ShK-186 every 2 to 5 days was as effective as daily administration. ShK-186's slow distribution from the injection site and its long residence time on the Kv1.3 channel contribute to the prolonged therapeutic effect of ShK-186 in animal models of autoimmune disease.


Subject(s)
Autoimmune Diseases/drug therapy , Kv1.3 Potassium Channel/antagonists & inhibitors , Proteins/pharmacology , T-Lymphocytes/drug effects , Absorption/drug effects , Absorption/immunology , Animals , Arthritis/drug therapy , Arthritis/immunology , Arthritis/metabolism , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Humans , Inhibitory Concentration 50 , Kv1.3 Potassium Channel/immunology , Kv1.3 Potassium Channel/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Macaca fascicularis , Potassium Channel Blockers/immunology , Potassium Channel Blockers/pharmacokinetics , Potassium Channel Blockers/pharmacology , Proteins/pharmacokinetics , Rats , Rats, Sprague-Dawley , Saimiri , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tissue Distribution/drug effects , Tissue Distribution/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...