Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nutrients ; 16(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38931204

ABSTRACT

BACKGROUND: There is a growing consensus that fasting-induced ketosis has beneficial effects on human physiology. Despite these compelling benefits, fasting-induced ketosis raises concerns in some clinicians because it is often inappropriately compared with the pathologic uncontrolled ketone production in diabetic ketoacidosis. The determinants of the inter-individual differences in the intensity of ketosis during long-term fasting is unknown. METHODS: We monitored daily variations in fasting ketonemia, as well as ketonuria, which is less invasive, in a large cohort of 1610 subjects, fasting between 4 and 21 days with the Buchinger Wilhelmi program, minimally supplemented with ~75-250 kcal (daily fruit juice, vegetable soup, and honey). RESULTS: Ketonuria was detected in more than 95% of fasting subjects from day 4 onwards. Subjects consuming only soups, without fruit juice or honey, exhibited reduced caloric intake (72 kcal instead of 236 kcal) and carbohydrate intake (15.6 g instead of 56.5 g), leading to more intense ketonuria. Participants with high ketonuria were, in the majority, males, young, had a higher body weight, and had lower HDL-C and urea values. They had a larger decrease in blood glucose, glycated haemoglobin levels, body weight, and waist circumference. Furthermore, in the high-ketonuria group, a larger increase in blood uric acid concentration was observed. CONCLUSION: Our study showed that long-term fasting triggered ketosis, never reaching pathological levels, and that ketosis is influenced by age, gender, health, and the level of physical activity. Furthermore, it is modulated but not suppressed by minimal carbohydrate intake. Our study paves the way for better understanding how supplementation can modulate the therapeutic effects and tolerability of long-term fasting.


Subject(s)
Fasting , Ketosis , Humans , Male , Female , Adult , Middle Aged , Blood Glucose/metabolism , Young Adult , Energy Intake , Honey , Time Factors , Aged , Fruit and Vegetable Juices , Uric Acid/blood
2.
Trends Endocrinol Metab ; 35(2): 107-124, 2024 02.
Article in English | MEDLINE | ID: mdl-37940485

ABSTRACT

Fasting is part of many weight management and health-boosting regimens. Fasting causes substantial metabolic adaptations in the liver that include the stimulation of fatty acid oxidation and ketogenesis. The induction of fatty acid oxidation and ketogenesis during fasting is mainly driven by interrelated changes in plasma levels of various hormones and an increase in plasma nonesterified fatty acid (NEFA) levels and is mediated transcriptionally by the peroxisome proliferator-activated receptor (PPAR)α, supported by CREB3L3 (cyclic AMP-responsive element-binding protein 3 like 3). Compared with men, women exhibit higher ketone levels during fasting, likely due to higher NEFA availability, suggesting that the metabolic response to fasting shows sexual dimorphism. Here, we synthesize the current molecular knowledge on the impact of fasting on hepatic fatty acid oxidation and ketogenesis.


Subject(s)
Fatty Acids, Nonesterified , Fatty Acids , Male , Female , Humans , Fatty Acids, Nonesterified/metabolism , Fatty Acids/metabolism , Liver/metabolism , Ketone Bodies/metabolism , Fasting/metabolism , Oxidation-Reduction , PPAR alpha/metabolism
3.
Life Sci Alliance ; 4(10)2021 10.
Article in English | MEDLINE | ID: mdl-34407998

ABSTRACT

Various forms of fasting and ketogenic diet have shown promise in (pre-)clinical studies to normalize body weight, improve metabolic health, and protect against disease. Recent studies suggest that ß-hydroxybutyrate (ßOHB), a fasting-characteristic ketone body, potentially acts as a signaling molecule mediating its beneficial effects via histone deacetylase inhibition. Here, we have investigated whether ßOHB, in comparison to the well-established histone deacetylase inhibitor butyrate, influences cellular differentiation and gene expression. In various cell lines and primary cell types, millimolar concentrations of ßOHB did not alter differentiation in vitro, as determined by gene expression and histological assessment, whereas equimolar concentrations of butyrate consistently impaired differentiation. RNA sequencing revealed that unlike butyrate, ßOHB minimally impacted gene expression in primary adipocytes, macrophages, and hepatocytes. However, in myocytes, ßOHB up-regulated genes involved in the TCA cycle and oxidative phosphorylation, while down-regulating genes belonging to cytokine and chemokine signal transduction. Overall, our data do not support the notion that ßOHB serves as a powerful signaling molecule regulating gene expression but suggest that ßOHB may act as a niche signaling molecule in myocytes.


Subject(s)
3-Hydroxybutyric Acid/metabolism , Gene Expression Regulation , Muscle Fibers, Skeletal/metabolism , Adipocytes/drug effects , Adipocytes/metabolism , Biomarkers , Butyrates/pharmacology , Cell Differentiation/drug effects , Cellular Microenvironment , Epigenesis, Genetic , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Macrophages/drug effects , Macrophages/metabolism , Monocytes/drug effects , Monocytes/metabolism , Sequence Analysis, RNA
4.
Mol Metab ; 40: 101033, 2020 10.
Article in English | MEDLINE | ID: mdl-32504883

ABSTRACT

OBJECTIVE: Studies in mice have shown that the decrease in lipoprotein lipase (LPL) activity in adipose tissue upon fasting is mediated by induction of the inhibitor ANGPTL4. Here, we aimed to validate this concept in humans by determining the effect of a prolonged fast on ANGPTL4 and LPL gene and protein expression in human subcutaneous adipose tissue. METHODS: Twenty-three volunteers ate a standardized meal at 18.00 h and fasted until 20.00 h the next day. Blood was drawn and periumbilical adipose tissue biopsies were collected 2 h and 26 h after the meal. RESULTS: Consistent with previous mouse data, LPL activity in human adipose tissue was significantly decreased by fasting (-60%), concurrent with increased ANGPTL4 mRNA (+90%) and decreased ANGPTL8 mRNA (-94%). ANGPTL4 protein levels in adipose tissue were also significantly increased by fasting (+46%), whereas LPL mRNA and protein levels remained unchanged. In agreement with the adipose tissue data, plasma ANGPTL4 levels increased upon fasting (+100%), whereas plasma ANGPTL8 decreased (-79%). Insulin, levels of which significantly decreased upon fasting, downregulated ANGPTL4 mRNA and protein in primary human adipocytes. By contrast, cortisol, levels of which significantly increased upon fasting, upregulated ANGPTL4 mRNA and protein in primary human adipocytes as did fatty acids. CONCLUSION: ANGPTL4 levels in human adipose tissue are increased by fasting, likely via increased plasma cortisol and free fatty acids and decreased plasma insulin, resulting in decreased LPL activity. This clinical trial was registered with identifier NCT03757767.


Subject(s)
Angiopoietin-Like Protein 4/metabolism , Fasting/metabolism , Lipoprotein Lipase/metabolism , Adipocytes/metabolism , Adipose Tissue/metabolism , Adult , Aged , Angiopoietin-Like Protein 4/physiology , Angiopoietin-Like Protein 8 , Angiopoietin-like Proteins/metabolism , Fatty Acids/metabolism , Fatty Acids, Nonesterified/analysis , Fatty Acids, Nonesterified/blood , Female , Humans , Insulin/metabolism , Insulin Resistance/physiology , Lipoprotein Lipase/physiology , Male , Middle Aged , Peptide Hormones/metabolism , Triglycerides/analysis , Triglycerides/metabolism
5.
J Biol Chem ; 295(10): 2913-2914, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32144145

ABSTRACT

The enzyme lipoprotein lipase (LPL) is responsible for breaking down triglycerides in the blood. Mutations in LPL cause a rare but debilitating disorder characterized by excessive plasma triglyceride levels for which treatment options are limited. Nimonkar et al. now present a fusion protein between LPL and its physiological transporter GBIHBP1 that is highly active and largely resistant to physiological inhibitors of LPL. Injecting this fusion protein effectively lowers plasma triglycerides in mice and represents a promising new approach for lowering triglycerides in patients with familial chylomicronemia syndrome.


Subject(s)
Hyperlipoproteinemia Type I , Lipase , Animals , Humans , Lipoprotein Lipase/genetics , Mice , Mutation , Triglycerides
6.
Am J Physiol Endocrinol Metab ; 317(5): E820-E830, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31386566

ABSTRACT

Brown adipose tissue (BAT) catabolizes glucose and fatty acids to produce heat and thereby contributes to energy expenditure. Long-term high-fat diet (HFD) feeding results in so-called 'whitening' of BAT characterized by increased lipid deposition, mitochondrial dysfunction, and reduced fat oxidation. The aim of the current study was to unravel the rate and related mechanisms by which HFD induces BAT whitening and insulin resistance. Wild-type mice were fed a HFD for 0, 1, 3, or 7 days. Within 1 day of HFD, BAT weight and lipid content were increased. HFD also immediately reduced insulin-stimulated glucose uptake by BAT, indicating rapid induction of insulin resistance. This was accompanied by a tendency toward a reduced uptake of triglyceride-derived fatty acids by BAT. Mitochondrial mass and Ucp1 expression were unaltered, whereas after 3 days of HFD, markers of mitochondrial dynamics suggested induction of a more fused mitochondrial network. Additionally, HFD also increased macrophage markers in BAT after 3 days of HFD. Counterintuitively, the switch to HFD was accompanied by an acute rise in core body temperature. We showed that a single day of HFD feeding is sufficient to induce the first signs of whitening and insulin resistance in BAT, which reduces the uptake of glucose and triglyceride-derived fatty acids. BAT whitening and insulin resistance are likely sustained by reduced mitochondrial oxidation due to changes in mitochondrial dynamics and macrophage infiltration, respectively. Likely, the switch to HFD swiftly induces thermogenesis in other metabolic organs, which allows attenuation of BAT thermogenesis.


Subject(s)
Adipose Tissue, Brown/metabolism , Diet, High-Fat , Insulin Resistance , Lipid Metabolism/drug effects , Adipose Tissue, Brown/drug effects , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , DNA, Mitochondrial/metabolism , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Thermogenesis/drug effects , Thermogenesis/genetics , Triglycerides/metabolism , Uncoupling Protein 1/metabolism
7.
J Lipid Res ; 60(10): 1741-1754, 2019 10.
Article in English | MEDLINE | ID: mdl-31409739

ABSTRACT

Angiopoietin-like protein (ANGPTL)4 regulates plasma lipids, making it an attractive target for correcting dyslipidemia. However, ANGPTL4 inactivation in mice fed a high fat diet causes chylous ascites, an acute-phase response, and mesenteric lymphadenopathy. Here, we studied the role of ANGPTL4 in lipid uptake in macrophages and in the above-mentioned pathologies using Angptl4-hypomorphic and Angptl4-/- mice. Angptl4 expression in peritoneal and bone marrow-derived macrophages was highly induced by lipids. Recombinant ANGPTL4 decreased lipid uptake in macrophages, whereas deficiency of ANGPTL4 increased lipid uptake, upregulated lipid-induced genes, and increased respiration. ANGPTL4 deficiency did not alter LPL protein levels in macrophages. Angptl4-hypomorphic mice with partial expression of a truncated N-terminal ANGPTL4 exhibited reduced fasting plasma triglyceride, cholesterol, and NEFAs, strongly resembling Angptl4-/- mice. However, during high fat feeding, Angptl4-hypomorphic mice showed markedly delayed and attenuated elevation in plasma serum amyloid A and much milder chylous ascites than Angptl4-/- mice, despite similar abundance of lipid-laden giant cells in mesenteric lymph nodes. In conclusion, ANGPTL4 deficiency increases lipid uptake and respiration in macrophages without affecting LPL protein levels. Compared with the absence of ANGPTL4, low levels of N-terminal ANGPTL4 mitigate the development of chylous ascites and an acute-phase response in mice.


Subject(s)
Adipocytes/metabolism , Angiopoietin-Like Protein 4/deficiency , Angiopoietin-Like Protein 4/genetics , Gene Knockout Techniques , Macrophages/metabolism , Animals , Cell Respiration , Chylous Ascites/genetics , Chylous Ascites/pathology , Exons/genetics , Gene Expression Regulation , Lipoprotein Lipase/metabolism , Lymphadenopathy/genetics , Lymphadenopathy/pathology , Mice , Mice, Inbred C57BL , Triglycerides/blood
8.
BMC Genomics ; 20(1): 199, 2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30866796

ABSTRACT

BACKGROUND: Peroxisome Proliferator-Activated receptor α (PPARα) and cAMP-Responsive Element Binding Protein 3-Like 3 (CREB3L3) are transcription factors involved in the regulation of lipid metabolism in the liver. The aim of the present study was to characterize the interrelationship between PPARα and CREB3L3 in regulating hepatic gene expression. Male wild-type, PPARα-/-, CREB3L3-/- and combined PPARα/CREB3L3-/- mice were subjected to a 16-h fast or 4 days of ketogenic diet. Whole genome expression analysis was performed on liver samples. RESULTS: Under conditions of overnight fasting, the effects of PPARα ablation and CREB3L3 ablation on plasma triglyceride, plasma ß-hydroxybutyrate, and hepatic gene expression were largely disparate, and showed only limited interdependence. Gene and pathway analysis underscored the importance of CREB3L3 in regulating (apo)lipoprotein metabolism, and of PPARα as master regulator of intracellular lipid metabolism. A small number of genes, including Fgf21 and Mfsd2a, were under dual control of PPARα and CREB3L3. By contrast, a strong interaction between PPARα and CREB3L3 ablation was observed during ketogenic diet feeding. Specifically, the pronounced effects of CREB3L3 ablation on liver damage and hepatic gene expression during ketogenic diet were almost completely abolished by the simultaneous ablation of PPARα. Loss of CREB3L3 influenced PPARα signalling in two major ways. Firstly, it reduced expression of PPARα and its target genes involved in fatty acid oxidation and ketogenesis. In stark contrast, the hepatoproliferative function of PPARα was markedly activated by loss of CREB3L3. CONCLUSIONS: These data indicate that CREB3L3 ablation uncouples the hepatoproliferative and lipid metabolic effects of PPARα. Overall, except for the shared regulation of a very limited number of genes, the roles of PPARα and CREB3L3 in hepatic lipid metabolism are clearly distinct and are highly dependent on dietary status.


Subject(s)
Cyclic AMP Response Element-Binding Protein/genetics , Gene Expression Profiling/methods , Liver/growth & development , PPAR alpha/genetics , 3-Hydroxybutyric Acid/blood , Animals , Cyclic AMP Response Element-Binding Protein/metabolism , Diet, Ketogenic , Fibroblast Growth Factors/genetics , Gene Expression Regulation , Gene Knockdown Techniques , Lipid Metabolism , Liver/chemistry , Male , Mice , PPAR alpha/metabolism , Signal Transduction , Symporters , Triglycerides/blood , Tumor Suppressor Proteins/genetics , Whole Genome Sequencing
9.
J Biol Chem ; 293(36): 14134-14145, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30021841

ABSTRACT

Lipoprotein lipase (LPL) catalyzes the breakdown of circulating triglycerides in muscle and fat. LPL is inhibited by several proteins, including angiopoietin-like 4 (ANGPTL4), and may be cleaved by members of the proprotein convertase subtilisin/kexin (PCSK) family. Here, we aimed to investigate the cleavage of LPL in adipocytes by PCSKs and study the potential involvement of ANGPTL4. A substantial portion of LPL in mouse and human adipose tissue was cleaved into N- and C-terminal fragments. Treatment of different adipocytes with the PCSK inhibitor decanoyl-RVKR-chloromethyl ketone markedly decreased LPL cleavage, indicating that LPL is cleaved by PCSKs. Silencing of Pcsk3/furin significantly decreased LPL cleavage in cell culture medium and lysates of 3T3-L1 adipocytes. Remarkably, PCSK-mediated cleavage of LPL in adipocytes was diminished by Angptl4 silencing and was decreased in adipocytes and adipose tissue of Angptl4-/- mice. Differences in LPL cleavage between Angptl4-/- and WT mice were abrogated by treatment with decanoyl-RVKR-chloromethyl ketone. Induction of ANGPTL4 in adipose tissue during fasting enhanced PCSK-mediated LPL cleavage, concurrent with decreased LPL activity, in WT but not Angptl4-/- mice. In adipocytes, after removal of cell surface LPL by heparin, levels of N-terminal LPL were still markedly higher in WT compared with Angptl4-/- adipocytes, suggesting that stimulation of PCSK-mediated LPL cleavage by ANGPTL4 occurs intracellularly. Finally, treating adipocytes with insulin increased full-length LPL and decreased N-terminal LPL in an ANGPTL4-dependent manner. In conclusion, ANGPTL4 promotes PCSK-mediated intracellular cleavage of LPL in adipocytes, likely contributing to regulation of LPL in adipose tissue. Our data provide further support for an intracellular action of ANGPTL4 in adipocytes.


Subject(s)
Adipocytes/metabolism , Angiopoietin-Like Protein 4/physiology , Furin/metabolism , Lipoprotein Lipase/metabolism , 3T3-L1 Cells , Animals , Humans , Insulin/pharmacology , Mice
10.
Cell Rep ; 22(13): 3521-3533, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29590620

ABSTRACT

Many favorable metabolic effects have been attributed to thermogenic activity of brown adipose tissue (BAT). Yet, time of day has rarely been considered in this field of research. Here, we show that a diurnal rhythm in BAT activity regulates plasma lipid metabolism. We observed a high-amplitude rhythm in fatty acid uptake by BAT that synchronized with the light/dark cycle. Highest uptake was found at the onset of the active period, which coincided with high lipoprotein lipase expression and low angiopoietin-like 4 expression by BAT. Diurnal rhythmicity in BAT activity determined the rate at which lipids were cleared from the circulation, thereby imposing the daily rhythm in plasma lipid concentrations. In mice as well as humans, postprandial lipid excursions were nearly absent at waking. We anticipate that diurnal BAT activity is an important factor to consider when studying the therapeutic potential of promoting BAT activity.


Subject(s)
Adipose Tissue, Brown/metabolism , Fatty Acids/metabolism , Lipid Metabolism/physiology , Animals , Circadian Rhythm , Humans , Mice , Wakefulness
11.
Mol Metab ; 10: 39-54, 2018 04.
Article in English | MEDLINE | ID: mdl-29455954

ABSTRACT

OBJECTIVE: Chronic cold exposure causes white adipose tissue (WAT) to adopt features of brown adipose tissue (BAT), a process known as browning. Previous studies have hinted at a possible role for the transcription factor Peroxisome Proliferator-Activated Receptor alpha (PPARα) in cold-induced browning. Here we aimed to investigate the importance of PPARα in driving transcriptional changes during cold-induced browning in mice. METHODS: Male wildtype and PPARα-/- mice were housed at thermoneutrality (28 °C) or cold (5 °C) for 10 days. Whole genome expression analysis was performed on inguinal WAT. In addition, other analyses were carried out. Whole genome expression data of livers of wildtype and PPARα-/- mice fasted for 24 h served as positive control for PPARα-dependent gene regulation. RESULTS: Cold exposure increased food intake and decreased weight of BAT and WAT to a similar extent in wildtype and PPARα-/- mice. Except for plasma non-esterified fatty acids, none of the cold-induced changes in plasma metabolites were dependent on PPARα genotype. Histological analysis of inguinal WAT showed clear browning upon cold exposure but did not reveal any morphological differences between wildtype and PPARα-/- mice. Transcriptomics analysis of inguinal WAT showed a marked effect of cold on overall gene expression, as revealed by principle component analysis and hierarchical clustering. However, wildtype and PPARα-/- mice clustered together, even after cold exposure, indicating a similar overall gene expression profile in the two genotypes. Pathway analysis revealed that cold upregulated pathways involved in energy usage, oxidative phosphorylation, and fatty acid ß-oxidation to a similar extent in wildtype and PPARα-/- mice. Furthermore, cold-mediated induction of genes related to thermogenesis such as Ucp1, Elovl3, Cox7a1, Cox8, and Cidea, as well as many PPAR target genes, was similar in wildtype and PPARα-/- mice. Finally, pharmacological PPARα activation had a minimal effect on expression of cold-induced genes in murine WAT. CONCLUSION: Cold-induced changes in gene expression in inguinal WAT are unaltered in mice lacking PPARα, indicating that PPARα is dispensable for cold-induced browning.


Subject(s)
Adipose Tissue, Brown/metabolism , Cold-Shock Response/genetics , PPAR alpha/metabolism , Animals , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , PPAR alpha/genetics , Thermogenesis/genetics , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...