Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1108245, 2023.
Article in English | MEDLINE | ID: mdl-37520367

ABSTRACT

Haloalkaliphilic microorganisms are double extremophiles functioning optimally at high salinity and pH. Their typical habitats are soda lakes, geologically ancient yet widespread ecosystems supposed to harbor relict microbial communities. We compared metabolic features and their determinants in two strains of the natronophilic species Dethiobacter alkaliphilus, the only cultured representative of the class "Dethiobacteria" (Bacillota). The strains of D. alkaliphilus were previously isolated from geographically remote Mongolian and Kenyan soda lakes. The type strain AHT1T was described as a facultative chemolithoautotrophic sulfidogen reducing or disproportionating sulfur or thiosulfate, while strain Z-1002 was isolated as a chemolithoautotrophic iron reducer. Here, we uncovered the iron reducing ability of strain AHT1T and the ability of strain Z-1002 for thiosulfate reduction and anaerobic Fe(II) oxidation. Key catabolic processes sustaining the growth of both D. alkaliphilus strains appeared to fit the geochemical settings of two contrasting natural alkaline environments, sulfur-enriched soda lakes and iron-enriched serpentinites. This hypothesis was supported by a meta-analysis of Dethiobacterial genomes and by the enrichment of a novel phylotype from a subsurface alkaline aquifer under Fe(III)-reducing conditions. Genome analysis revealed multiheme c-type cytochromes to be the most probable determinants of iron and sulfur redox transformations in D. alkaliphilus. Phylogeny reconstruction showed that all the respiratory processes in this organism are likely provided by evolutionarily related early forms of unconventional octaheme tetrathionate and sulfite reductases and their structural analogs, OmhA/OcwA Fe(III)-reductases. Several phylogenetically related determinants of anaerobic Fe(II) oxidation were identified in the Z-1002 genome, and the oxidation process was experimentally demonstrated. Proteomic profiling revealed two distinct sets of multiheme cytochromes upregulated in iron(III)- or thiosulfate-respiring cells and the cytochromes peculiar for Fe(II) oxidizing cells. We suggest that maintaining high variation in multiheme cytochromes is an effective adaptive strategy to occupy geochemically contrasting alkaline environments. We propose that sulfur-enriched soda lakes could be secondary habitats for D. alkaliphilus compared to Fe-rich serpentinites, and that the ongoing evolution of Dethiobacterales could retrace the evolutionary path that may have occurred in prokaryotes at a turning point in the biosphere's history, when the intensification of the sulfur cycle outweighed the global significance of the iron cycle.

2.
Nanomaterials (Basel) ; 12(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36500744

ABSTRACT

The paper presents the results of a study of iron oxide nanoparticles obtained by chemical coprecipitation, coated (Fe3O4@Au) and not coated (Fe3O4) with gold, which were subjected to thermal annealing. To characterize the nanoparticles under study, scanning and transmission electron microscopy, X-ray diffraction, and Mössbauer spectroscopy on 57Fe nuclei were used, the combination of which made it possible to establish a sequence of phase transformations, changes in morphological and structural characteristics, as well as parameters of hyperfine interactions. During the studies, it was found that thermal annealing of nanoparticles leads to phase transformation processes in the following sequence: nonstoichiometric magnetite (Fe3-γO4) → maghemite (γ-Fe2O3) → hematite (α-Fe2O3), followed by structural ordering and coarsening of nanoparticles. It is shown that nanoparticles of nonstoichiometric magnetite with and without gold coating are in the superparamagnetic state with a slow relaxation rate. The magnetic anisotropy energy of nonstoichiometric magnetite is determined as a function of the annealing temperature. An estimate was made of the average size of the region of magnetic ordering of Fe atoms in nonstoichiometric magnetite, which is in good agreement with the data on the average sizes of nanoparticles determined by scanning electron microscopy.

3.
Nanomaterials (Basel) ; 12(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36014598

ABSTRACT

Iron-containing oxides are the most important functional substance class and find a tremendous variety of applications. An attractive modern application is their use in biomedical technologies as components in systems for imaging, drug delivery, magnetically mediated hyperthermia, etc. In this paper, we report the results of the experimental investigation of submicron Y3Fe5O12 garnet particles obtained in different sizes by solution combustion synthesis (SCS) using glycine organic fuel to discuss the interdependence of peculiarities of the crystal and magnetic structure and size's influence on its functional magnetothermal performance. A complex study including Mössbauer and Raman spectroscopy accompanied by X-ray diffractometry, SEM, and measurements of field and temperature magnetic properties were performed. The influence of the size effects and perfectness of structure on the particle set magnetization was revealed. The ranges of different mechanisms of magnetothermal effect in the AC magnetic field were determined.

4.
Inorg Chem ; 60(23): 17462-17479, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34757728

ABSTRACT

A potassium salt of the N2S2O2-coordination Fe(III) anion K[Fe(5Cl-thsa)2] (1) (5Cl-thsa - 5-chlorosalicylaldehyde thiosemicarbazone) is synthesized and characterized structurally and magnetically over a wide temperature range. Two polymorphs of salt 1 characterized by the common 2D polymer nature and assigned to the same orthorhombic Pbcn space group have been identified. The molecular structure of the minor polymorph of 1 was solved and refined at 100, 250, and 300 K is shown to correspond to the LS configuration. The dominant polymorph of 1 features K+ cations disordered over a few crystallographic sites, while the minor polymorph includes fully ordered K+ cations. The major polymorph exhibits a complete three-step cooperative spin-crossover transition both in the heating and cooling modes: The first step occurs in a temperature range from 2 to 50 K; the second abrupt hysteretic step occurs from 200 to 250 K with T1/2 = 230 K and a 6 K hysteresis loop. The third gradual step occurs from 250 to 440 K. According to 57Fe Mössbauer, XRPD, and EXAFS data, the spin-crossover transition for the dominant polymorph is quite peculiar. Indeed, the increase in the HS concentration by 57% at the second step does not result in the expected significant increase in the iron(III)-ligand bond lengths. In addition, the final step of the spin conversion (ΔγHS = 26%) is associated with a structural phase transition with a symmetry lowering from the orthorhombic (Pbcn) to the monoclinic (P21/n) space group. This nontrivial phenomenon was investigated in detail by applying magnetization measurements, electron spin resonance, 57Fe Mössbauer spectroscopy, and DFT calculations. These results provide a new platform for understanding the multistep spin-crossover character in the Fe(III) thsa-complexes and related compounds.

5.
J Phys Chem A ; 125(1): 139-145, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33389998

ABSTRACT

Mössbauer spectroscopy, nuclear forward scattering, and Raman spectroscopy were applied to study redox transformations of the synthesized mixed-valence (III/V) antimony oxide. The transformations were induced by a culture of a hyperthermophilic archaeon of the genus Pyrobaculum. The applied methods allowed us to reveal the minor decrease of ca. 11.0 ± 1.2% of the antimony(V) content of the mixed-valence oxide with the concomitant increase of antimony(III). The method sensitivities for the quantitative assessment of the Sb(III/V) ratio have been considered.


Subject(s)
Antimony/analysis , Oxides/analysis , Pyrobaculum/chemistry , Antimony/metabolism , Oxidation-Reduction , Oxides/metabolism , Pyrobaculum/metabolism , Spectroscopy, Mossbauer , Spectrum Analysis, Raman
6.
Nanomaterials (Basel) ; 9(5)2019 May 17.
Article in English | MEDLINE | ID: mdl-31108892

ABSTRACT

Hyperfine interactions of 57Fe nuclei in Fe100-xNix nanostructures synthesized in polymer ion-track membranes were studied by Mössbauer spectroscopy. The main part of obtained nanostructures was Fe100-xNix nanotubes with bcc structure for 0 ≤ x ≤ 40, and with fcc structure for 50 ≤ x ≤ 90. The length, outside diameter and wall thickness of nanotubes were 12 µm, 400 ± 10 nm and 120 ± 5 nm respectively. For the studied nanotubes a magnetic texture is observedalong their axis. The average value of the angle between the direction of the Fe atom magnetic moment and the nanotubes axis decreases with increasing of Ni concentration for nanotubes with bcc structure from ~50° to ~40°, and with fcc structure from ~55° to ~46°. The concentration dependences of the hyperfine parameters of nanotubes Mössbauer spectra are qualitatively consistent with the data for bulk polycrystalline samples. With Ni concentration increasing the average value of the hyperfine magnetic field increases from ~328 kOe to ~335 kOe for the bcc structure and drops to ~303 kOe in the transition to the fcc structure and then decreases to ~290 kOe at x = 90. Replacing the Fe atom with the Ni atom in the nearest environment of Fe atom within nanotubes with bcc structure lead to an increase in the hyperfine magnetic field by "6-9 kOe", and in tubes with fcc structure-to a decrease in the hyperfine magnetic field by "11-16 kOe". The changes of the quadrupole shift and hyperfine magnetic field are linearly correlated with the coefficient -(15 ± 5)·10-4 mm/s/kOe.

7.
Front Microbiol ; 9: 1759, 2018.
Article in English | MEDLINE | ID: mdl-30123201

ABSTRACT

The genus Carboxydocella forms a deeply branching family in the class Clostridia and is currently represented by three physiologically diverse species of thermophilic prokaryotes. The type strain of the type species, Carboxydocella thermautotrophica 41T, is an obligate chemolithoautotroph growing exclusively by hydrogenogenic CO oxidation. Another strain, isolated from a hot spring at Uzon caldera, Kamchatka in the course of this work, is capable of coupling carboxydotrophy and dissimilatory reduction of Fe(III) from oxic and phyllosilicate minerals. The processes of carboxydotrophy and Fe(III) reduction appeared to be interdependent in this strain. The genomes of both isolates were sequenced, assembled into single chromosome sequences (for strain 41T a plasmid sequence was also assembled) and analyzed. Genome analysis revealed that each of the two strains possessed six genes encoding diverse Ni,Fe-containing CO dehydrogenases (maximum reported in complete prokaryotic genomes), indicating crucial role of carbon monoxide in C. thermautotrophica metabolism. Both strains possessed a set of 30 multiheme c-type cytochromes, but only the newly isolated Fe-reducing strain 019 had one extra gene of a 17-heme cytochrome, which is proposed to represent a novel determinant of dissimilatory iron reduction in prokaryotes. Mössbauer studies revealed that strain 019 induced reductive transformation of the abundant ferric/ferrous-mica mineral glauconite to siderite during carboxydotrophic growth. Reconstruction of the C. thermautotrophica strains energy metabolism is the first comprehensive genome analysis of a representative of the deep phylogenetic branch Clostridia Incertae Sedis, family V. Our data provide insights into energy metabolism of C. thermautotrophica with an emphasis on its ecological implications.

8.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 72(Pt 5): 744-752, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27698316

ABSTRACT

Vesuvianite containing 5.85 wt% TiO2 from an Alpine-cleft-type assemblage outcropped near Alchuri, Shigar Valley, Northern Areas, Pakistan, has been investigated by means of electron microprobe analyses, gas-chromatographic analysis of H2O, X-ray powder diffraction, single-crystal X-ray structure refinement, 27Al NMR, 57Fe Mössbauer spectroscopy, IR spectroscopy and optical measurements. Tetragonal unit-cell parameters are: a = 15.5326 (2), c = 11.8040 (2) Å, space group P4/nnc. The structure was refined to final R1 = 0.031, wR2 = 0.057 for 11247 I > 2σ(I). A general crystal-chemical formula of studied sample can be written as follows (Z = 2): [8-9](Ca17.1Na0.9) [8]Ca1.0[5](Fe2+0.44Fe3+0.34Mg0.22) [6](Al3.59Mg0.41) [6](Al4.03Ti2.20Fe3+1.37Fe2+0.40) (Si18O68) [(OH)5.84O2.83F1.33]. The octahedral site Y2 is Al-dominant and does not contain transition elements. Another octahedral site Y3 is also Al-dominant and contains Fe2+, Fe3+ and Ti. The site Y1 is split into Y1a and Y1b predominantly occupied by Fe2+ and Fe3+, respectively. The role of the Y1 site in the diversity of vesuvianite-group minerals is discussed.


Subject(s)
Minerals/chemistry , Chromatography, Gas , Crystallography, X-Ray , Iron/chemistry , Magnetic Resonance Spectroscopy , Minerals/analysis , Pakistan , Powders/chemistry , Spectrophotometry, Infrared , Spectroscopy, Mossbauer , Titanium/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...