Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 121(17): 177702, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30411928

ABSTRACT

We report the observation of a current-phase relation dominated by the second Josephson harmonic in superconductor-ferromagnet-superconductor junctions. The exotic current-phase relation is realized in the vicinity of a temperature-controlled 0-to-π junction transition, at which the first Josephson harmonic vanishes. Direct current-phase relation measurements, as well as Josephson interferometry, nonvanishing supercurrent and half-integer Shapiro steps at the 0-π transition self-consistently point to an intrinsic second harmonic term, making it possible to rule out common alternative origins of half-periodic behavior. While surprising for diffusive multimode junctions, the large second harmonic is in agreement with theory predictions for thin ferromagnetic interlayers.

2.
Phys Rev Lett ; 87(5): 052701, 2001 Jul 30.
Article in English | MEDLINE | ID: mdl-11497767

ABSTRACT

Two components in the M(gamma)(M) distribution were established in detailed measurements of mean gamma-ray multiplicities from fission fragments of (226)Th. For the first time in the M(gamma)(M) dependencies we were able to distinguish two components associated with primary and the final (after the neutron evaporation) fission fragments, and show that at the scission point M(gamma) is extremely sensitive to symmetric and asymmetric modes of fission. Theoretical calculations of the pre-scission shapes of the fissioning nuclei confirm our conclusions.

3.
Phys Rev Lett ; 86(11): 2427-30, 2001 Mar 12.
Article in English | MEDLINE | ID: mdl-11289946

ABSTRACT

We report measurements of the temperature dependence of the critical current, I(c), in Josephson junctions consisting of conventional superconducting banks of Nb and a weakly ferromagnetic interlayer of a CuxNi1-x alloy, with x around 0.5. With decreasing temperature I(c) generally increases, but for specific thicknesses of the ferromagnetic interlayer, a maximum is found followed by a strong decrease down to zero, after which I(c) rises again. Such a sharp cusp can be explained only by assuming that the junction changes from a 0-phase state at high temperatures to a pi phase state at low temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...