Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 87(3): 1756-1766, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-34610236

ABSTRACT

This article discloses the direct α-amination of α-branched aldehydes applying nitrogen-based nucleophiles. Under organocatalyzed, oxidative conditions α-branched aldehydes are umpoled to their electrophilic synthons and, subsequently, displaced by a variety of nucleophilic amines to form tetrasubstituted tertiary centers. A similar strategy has been previously employed to form congested C-C, C-O, and C-S bonds; however, unsatisfactory results were received when extending the methodology to include C-N bonds. Initially, intramolecular α-amination reactions were undertaken to foster dihydroquinoxaline-type products. A solvent exchange to the polar, aprotic solvent, MeNO2, proved critical to facilitate intermolecular α-C-N bond formation with a wide range of amine coupling partners (N-heterocycles, N,N-diaryl amines, and anilines). Application of the solvent exchange to the enantioselective SN2-DKR manifold provided distinct regimes leading to refinement in yield and enantioselectivity.

2.
Angew Chem Int Ed Engl ; 58(49): 17856-17862, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31595649

ABSTRACT

Nucleophile-nucleophile coupling is a challenging transformation in organic chemistry. Herein we present a novel umpolung strategy for α-functionalization of aldehydes with nucleophiles. The strategy uses organocatalytic enamine activation and quinone-promoted oxidation to access O-bound quinol-intermediates that undergo nucleophilic substitution reactions. These quinol-intermediates react with different classes of nucleophiles. The focus is on an unprecedented organocatalytic oxidative α-thiolation of aldehydes. The reaction scope is demonstrated for a broad range of thiols and extended to chemoselective bioconjugation, and applicable to a large variety of aldehydes. This strategy can also encompass organocatalytic enantioselective coupling of α-branched aldehydes with thiols forming quaternary thioethers. Studies indicate a stereoselective formation of the intermediate followed by a stereospecific nucleophilic substitution reaction at a quaternary stereocenter, with inversion of configuration.


Subject(s)
Aldehydes/chemistry , Sulfhydryl Compounds/chemistry , Benzoquinones/chemistry , Catalysis , Electron Transport , Hydroquinones/chemistry , Molecular Structure , Oxidation-Reduction , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...