Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 18(8): e3000820, 2020 08.
Article in English | MEDLINE | ID: mdl-32866173

ABSTRACT

Mutations in the gene encoding the microtubule-severing protein spastin (spastic paraplegia 4 [SPG4]) cause hereditary spastic paraplegia (HSP), associated with neurodegeneration, spasticity, and motor impairment. Complicated forms (complicated HSP [cHSP]) further include cognitive deficits and dementia; however, the etiology and dysfunctional mechanisms of cHSP have remained unknown. Here, we report specific working and associative memory deficits upon spastin depletion in mice. Loss of spastin-mediated severing leads to reduced synapse numbers, accompanied by lower miniature excitatory postsynaptic current (mEPSC) frequencies. At the subcellular level, mutant neurons are characterized by longer microtubules with increased tubulin polyglutamylation levels. Notably, these conditions reduce kinesin-microtubule binding, impair the processivity of kinesin family protein (KIF) 5, and reduce the delivery of presynaptic vesicles and postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Rescue experiments confirm the specificity of these results by showing that wild-type spastin, but not the severing-deficient and disease-associated K388R mutant, normalizes the effects at the synaptic, microtubule, and transport levels. In addition, short hairpin RNA (shRNA)-mediated reduction of tubulin polyglutamylation on spastin knockout background normalizes KIF5 transport deficits and attenuates the loss of excitatory synapses. Our data provide a mechanism that connects spastin dysfunction with the regulation of kinesin-mediated cargo transport, synapse integrity, and cognition.


Subject(s)
Glutamic Acid/metabolism , Kinesins/metabolism , Memory Disorders/metabolism , Memory Disorders/physiopathology , Memory, Short-Term , Neurons/metabolism , Spastin/deficiency , Tubulin/metabolism , Action Potentials , Animals , Cell Membrane/metabolism , Dendritic Spines/metabolism , Dendritic Spines/ultrastructure , Excitatory Postsynaptic Potentials , Hippocampus/pathology , Hippocampus/physiopathology , Mice, Knockout , Microtubules/metabolism , Microtubules/ultrastructure , Motor Activity , Neurons/pathology , Neurons/ultrastructure , Protein Transport , Spastin/metabolism , Synapses/metabolism , Synapses/ultrastructure , Synaptic Vesicles/metabolism
2.
Sci Rep ; 9(1): 15940, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31685876

ABSTRACT

Microtubule severing regulates cytoskeletal rearrangement underlying various cellular functions. Katanin, a heterodimer, consisting of catalytic (p60) and regulatory (p80) subunits severs dynamic microtubules to modulate several stages of cell division. The role of p60 katanin in the mammalian brain with respect to embryonic and adult neurogenesis is poorly understood. Here, we generated a Katna1 knockout mouse and found that consistent with a critical role of katanin in mitosis, constitutive homozygous Katna1 depletion is lethal. Katanin p60 haploinsufficiency induced an accumulation of neuronal progenitors in the subventricular zone during corticogenesis, and impaired their proliferation in the adult hippocampus dentate gyrus (DG) subgranular zone. This did not compromise DG plasticity or spatial and contextual learning and memory tasks employed in our study, consistent with the interpretation that adult neurogenesis may be associated with selective forms of hippocampal-dependent cognitive processes. Our data identify a critical role for the microtubule-severing protein katanin p60 in regulating neuronal progenitor proliferation in vivo during embryonic development and adult neurogenesis.


Subject(s)
Cell Differentiation , Katanin/genetics , Microtubules/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis , Age Factors , Alleles , Animals , Cell Differentiation/genetics , Cell Proliferation , Cerebral Cortex/embryology , Cerebral Cortex/metabolism , Dentate Gyrus/embryology , Dentate Gyrus/metabolism , Gene Targeting , Haploinsufficiency , Katanin/metabolism , Learning , Memory , Mice , Mice, Knockout , Neurogenesis/genetics , Neurons/cytology , Neurons/metabolism , Organogenesis , Phenotype
3.
Neuron ; 92(4): 845-856, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27773584

ABSTRACT

Developmental axon remodeling is characterized by the selective removal of branches from axon arbors. The mechanisms that underlie such branch loss are largely unknown. Additionally, how neuronal resources are specifically assigned to the branches of remodeling arbors is not understood. Here we show that axon branch loss at the developing mouse neuromuscular junction is mediated by branch-specific microtubule severing, which results in local disassembly of the microtubule cytoskeleton and loss of axonal transport in branches that will subsequently dismantle. Accordingly, pharmacological microtubule stabilization delays neuromuscular synapse elimination. This branch-specific disassembly of the cytoskeleton appears to be mediated by the microtubule-severing enzyme spastin, which is dysfunctional in some forms of upper motor neuron disease. Our results demonstrate a physiological role for a neurodegeneration-associated modulator of the cytoskeleton, reveal unexpected cell biology of branch-specific axon plasticity and underscore the mechanistic similarities of axon loss in development and disease.


Subject(s)
Adenosine Triphosphatases/metabolism , Axonal Transport , Microtubules/metabolism , Neuromuscular Junction/metabolism , Neuronal Plasticity , Adenosine Triphosphatases/genetics , Animals , Cytoskeleton/metabolism , Mice , Mice, Knockout , Motor Neuron Disease/metabolism , Spastin
4.
Proc Natl Acad Sci U S A ; 111(13): 5030-5, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24639525

ABSTRACT

The GluA2 subunit of AMPA-type glutamate receptors (AMPARs) regulates excitatory synaptic transmission in neurons. In addition, the transsynaptic cell adhesion molecule N-cadherin controls excitatory synapse function and stabilizes dendritic spine structures. At postsynaptic membranes, GluA2 physically binds N-cadherin, underlying spine growth and synaptic modulation. We report that N-cadherin binds to PSD-95/SAP90/DLG/ZO-1 (PDZ) domain 2 of the glutamate receptor interacting protein 1 (GRIP1) through its intracellular C terminus. N-cadherin and GluA2-containing AMPARs are presorted to identical transport vesicles for dendrite delivery, and live imaging reveals cotransport of both proteins. The kinesin KIF5 powers GluA2/N-cadherin codelivery by using GRIP1 as a multilink interface. Notably, GluA2 and N-cadherin use different PDZ domains on GRIP1 to simultaneously bind the transport complex, and interference with either binding motif impairs the turnover of both synaptic cargoes. Depolymerization of microtubules, deletion of the KIF5 motor domain, or specific blockade of AMPAR exocytosis affects delivery of GluA2/N-cadherin vesicles. At the functional level, interference with this cotransport reduces the number of spine protrusions and excitatory synapses. Our data suggest the concept that the multi-PDZ-domain adaptor protein GRIP1 can act as a scaffold at trafficking vesicles in the combined delivery of AMPARs and N-cadherin into dendrites.


Subject(s)
Cadherins/metabolism , Dendrites/metabolism , Nerve Tissue Proteins/metabolism , Receptors, AMPA/metabolism , Transport Vesicles/metabolism , Animals , Dendrites/ultrastructure , HEK293 Cells , Humans , Kinesins/metabolism , Mice , Protein Binding , Protein Transport , Rats , Synapses/metabolism , Synapses/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...