Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci ; 88(3): 1075-1088, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36658679

ABSTRACT

The aim of this work is to produce bioactive films suitable for aerobic packaging applications by combining the bioactivity of Spirulina platensis protein concentrate (PC; 1% and 2% w/w), the sustainable nature of bovine gelatin (Ge), and sodium alginate dialdehyde (ADA, 5% w/w) as Schiff base crosslinking agent. PC was obtained by an optimized acid-base extraction process and characterized. PC showed a dose-dependent radical scavenging activity (RSA; IC50  = 24.3 mg/L) related to its high content of C-phycocyanin and total phenolic compounds (32.44 ± 1.37 mg gallic acid equivalents per gram of PC). As a general trend, crosslinking decreased the water solubility, improved mechanical properties, and helped improve RSA of Ge-ADA-PC films. Ge-5ADA-2PC film recorded best compromise between solubility (only 33.6%), high UV barrier (0.134% transmittance at 400 nm), reasonable extensibility (217.00 ± 2.34%), tensile strength (3.50 ± 0.43 MPa), water vapor permeability (2.00 ± 0.17 × 10-12  kg·m/m2 ·Pa·s), and RSA (44.70 ± 2.19%). Wrapping hake fillets in this filmdelayed lipid oxidation during storage under refrigerated conditions for 11 days, maintaining the thiobarbituric acid index below 0.5 mg malonaldehyde/kg muscle. Results suggest that Ge-ADA-PC films have potential as aerobic packaging materials for oxidation-sensitive food. PRACTICAL APPLICATION: The combination of gelatin, alginate dialdehyde and Spirulina platensis protein concentrate gave rise to fully biobased films with reduced water solubility and enhanced antioxidant activity, which were able to delay the secondary lipid oxidation of refrigerated seafood. This study also shows the potential of cyanobacteria as renewable resources of high-value ingredients for the design of active and intelligent aerobic packaging solutions.


Subject(s)
Antioxidants , Food Packaging , Animals , Cattle , Food Packaging/methods , Gelatin , Schiff Bases , Permeability , Lipids
2.
Polymers (Basel) ; 16(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38201724

ABSTRACT

Brewer's spent grain (BSG) is the main solid waste generated in beer production and primarily consists of barley malt husks. Based on the active promotion of circular economy practices aimed at recycling food industry by-products, this study assessed for the first time the production of particleboards based on BSG as the sole source of lignocellulosic material and natural adhesive without the use of additives or other substrates. In order to achieve particleboards from entirely sustainable sources, BSG particles have to self-bind by thermo-compression with water. In this context, the aim of this study is to assess the effects of pressing temperatures and particle size on properties such as modulus of elasticity, modulus of rupture, internal bond, thickness swelling, and water absorption. The performance of binderless boards was compared with that of a control panel (control) using BSG combined with phenolic resin. Processing conditions were selected to produce boards with a target density of 1000 kg/m³ and a thickness of 5 mm. To confirm the efficiency of the self-adhesion process, scanning electron microscopy was used to examine the boards. The processes of self-adhesion and particle-to-particle contact were facilitated at a pressing temperature of 170 °C and a particle size range of 200-2380 µm (ground BSG), resulting in improved flexural properties and enhanced water resistance. The properties of BSG-based binderless boards were comparable to those reported for other biomass residues, suggesting that they might be used in non-structural applications, such as interior decoration.

3.
Polymers (Basel) ; 13(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34685299

ABSTRACT

The aim of this research was to prepare an antifungal soybean protein concentrate (SPC) adhesive containing carvacrol (CRV) as a bioactive agent able to delay the attack of molds and yeast during storage of SPC adhesive at 4 °C as water-based systems. CRV was incorporated in SPC slurry at 0.5% v/v (~10 times its minimum inhibitory concentration against Aspergillus terreus, used as model fungus), to ensure its long-term action. CRV scarcely altered the thermal properties, structure and apparent viscosity of SPC adhesive. Active SPC aqueous dispersion was microbiologically stable for at least 30 days at 4 °C where the colonization begins, while control SPC was visually colonized from the second day. Rice husk (RH) particleboards of density ~900 kg/m3 were manufactured using the active SPC stored for 0, 10, 20, and 30 days as a binder. Modulus of elasticity, modulus of rupture and internal bond of RH-control SPC (without CRV) panels were 12.3 MPa, 2.65 GPa and 0.27 MPa, respectively, and were statistically unaltered compared with those obtained with fresh SPC, regardless of the presence of CRV or the storage time. This last implies that active SPC should not necessarily have to be prepared daily and/or be used immediately after its preparation. Since it is microbiologically stabilized, it can be store at least for 30 days, ensuring the stability of the protein. The quality of the adhesive was evidenced by the consistent properties of the adhesive, expanding its potential use and commercialization.

4.
Molecules ; 25(14)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674424

ABSTRACT

The use of packaging films containing natural preservative compounds attracts great attention for the quality improvement of seafood. Microalga spirulina (Spirulina platensis) represents a potential source of high added-value and preservative biocompounds. The goal of this study was to enhance the quality of refrigerated Atlantic mackerel (Scomber scombrus) by including a protein concentrate (PC) of spirulina in a gelatine-based film. Quality changes in fish muscle were monitored by microbial and chemical analyses throughout an 11-day refrigerated storage (4 °C). As a result of the presence of spirulina PC in the film, an antimicrobial effect (p < 0.05) was concluded as determined by comparative evolution of aerobes and psychrotrophs, while no effect (p > 0.05) was concluded for Enterobacteriaceae, proteolytics and lipolytics counts. Furthermore, a lower (p < 0.05) formation of trimethylamine and free fatty acids was detected. Lipid oxidation, measured by fluorescent compounds formation, also exhibited lower average values in fish corresponding to the batch containing spirulina concentrate. The preservative effects observed can be explained on the basis of the presence of antimicrobial and antioxidant compounds in the microalga concentrate. It is proposed that the current packaging system may constitute a novel and promising strategy to enhance the quality of commercial refrigerated fatty fish.


Subject(s)
Bacterial Proteins/chemistry , Biocompatible Materials/chemistry , Food Packaging , Seafood , Spirulina/chemistry , Animals , Chemical Phenomena , Fishes , Food Microbiology , Hydrogen-Ion Concentration
5.
Food Chem ; 243: 448-452, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29146364

ABSTRACT

Post-processing evolution of the functional properties of soybean protein concentrate (SPC) films, plasticized with varying levels of glycerol and processed by compression molding, was examined over a period of 90days. Films stored in the glassy state (25±2°C and 65±2% relative humidity) lost glycerol and water over time, as determined by gas chromatography and the decline in moisture content. SPC films plasticized with 40-50% glycerol showed a time-dependent increment of the elastic modulus and the tensile strength. In turn, the elongation, barrier properties, soluble mass and opacity of these films varied marginally with time. By contrast, films with 30% glycerol lost the most moisture and their elongation was reduced significantly, while water vapor permeability slightly increased with aging. The performance of aged films resulted from the balance between plasticizer and water loss, and the progressive replacement of unordered structures by intermolecular hydrogen bonded ß-sheets and aggregates.


Subject(s)
Soybean Proteins/chemistry , Elastic Modulus , Food Packaging/instrumentation , Glycerol/chemistry , Molecular Weight , Permeability , Plasticizers/chemistry , Steam/analysis , Tensile Strength
6.
Food Sci Technol Int ; 21(3): 221-31, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24831641

ABSTRACT

The impact of the incorporation of 10% w/w of hydrolyzable chestnut tannin into pigskin gelatin (G) films plasticized with glycerol (Gly) on the physicochemical properties as well as the in vitro antioxidant and antibacterial effectiveness against food-borne pathogens such as Escherichia coli and Streptococcus aureus was investigated. A higher tendency to both redness (a*) and yellowness (b*) coloration characterized gelatin films incorporated with chestnut tannin. The reduced lightness (L) and transparency of gelatin-chestnut tannin films plasticized with 30% w/w Gly might be associated with certain degree of phase separation which provoked the migration of the plasticizer to the film surface. The incorporation of chestnut tannin and glycerol affected the chemical structure of the resultant films due to the establishment of hydrogen interactions between components as revealed by Fourier transform infrared spectroscopy. These interactions reduced gelatin crystallinity and seemed to be involved in the substantial decrease of the water uptake of films with tannin, irrespective of the glycerol level. Such interactions had minor effect on tensile properties being similar to those of the control films (without chestnut tannin) at the same glycerol level. Films modified with 10% w/w chestnut tannin showed significant (P < 0.05) 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, ca. from 0 ± 0.033 to 87.1 ± 0.002% for chestnut tannin-free and chestnut tannin-containing gelatin films. The limited inhibitory activity of films incorporated with 10% w/w chestnut tannin against the selected bacteria evidenced by disk diffusion method probably resulted from the interactions within the film restricting the diffusion of the active agent into the agar medium. The more modest protective effect observed against a Gram-positive bacterium (S. aureus) was also discussed.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Gelatin/pharmacology , Tannins/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Chemical Phenomena , Color , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Gelatin/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Edible/chemistry , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Swine , Tannins/chemistry , X-Ray Diffraction
7.
Bioresour Technol ; 101(2): 818-25, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19766482

ABSTRACT

The main goal of this work was to evaluate the technical feasibility of using rice husk (RH) as wood substitute in the production of environmentally sound medium-density particleboards using adhesives from soybean protein concentrate (SPC). Chemical modification of rice husk with sodium hydroxide and sodium hydroxide followed by hydrogen peroxide (bleaching) were undertaken to evaluate the effect of such treatments on the composition and topology of rice husk and the performance of produced panels. Both treatments were efficient in partially eliminating hemicelluloses, lignin and silica from RH, as evidenced by thermo-gravimetric analysis (TGA). Scanning electron microscopy observations suggested that alkaline treatment resulted in a more damaged RH substrate than bleaching. The dependence of mechanical properties (modulus of rupture, modulus of elasticity, and internal bond) and the physical properties (water absorption and thickness swelling) on chemical treatments performed on both, rice husk and SPC was studied. Bleached-rice husk particleboards bonded with alkaline-treated soybean protein concentrate displayed the best set of final properties. Particleboards with this formulation met the minimum requirements of internal bond, modulus of elasticity and modulus of rupture recommended by the US Standard ANSI/A208.1 specifications for M1, MS and M2-grade medium-density particleboards, but failed to achieve the thickness swelling value recommended for general use panels. This limitation of soybean protein concentrate-bonded rice husk particleboards was counterbalanced by the advantage of being formaldehyde-free which makes them a suitable alternative for indoor applications.


Subject(s)
Adhesives , Glycine max , Oryza , Plant Proteins/chemistry , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...