Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 26(22): 28249-28262, 2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30470000

ABSTRACT

Recently a scheme has been proposed for detection of the structured light by measuring the transmission of a vortex beam through a cloud of cold rubidium atoms with energy levels of the Λ-type configuration [N. Radwell et al., Phys. Rev. Lett.114, 123603 (2015) ]. This enables observation of regions of spatially dependent electromagnetically induced transparency (EIT). Here we suggest another scenario for detection of the structured light by measuring the absorption profile of a weak nonvortex probe beam in a highly resonant five-level combined tripod and Λ (CTL) atom-light coupling setup. We demonstrate that due to the closed-loop structure of CTL scheme, the absorption of the probe beam depends on the azimuthal angle and orbital angular momentum (OAM) of the control vortex beams. This feature is missing in simple Λ or tripod schemes, as there is no loop in such atom-light couplings. One can identify different regions of spatially structured transparency through measuring the absorption of probe field under different configurations of structured control light.

2.
Phys Rev E ; 94(3-1): 032109, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27739692

ABSTRACT

In this paper we consider heterogeneous diffusion processes with the power-law dependence of the diffusion coefficient on the position and investigate the influence of external forces on the resulting anomalous diffusion. The heterogeneous diffusion processes can yield subdiffusion as well as superdiffusion, depending on the behavior of the diffusion coefficient. We assume that not only the diffusion coefficient but also the external force has a power-law dependence on the position. We obtain analytic expressions for the transition probability in two cases: when the power-law exponent in the external force is equal to 2η-1, where 2η is the power-law exponent in the dependence of the diffusion coefficient on the position, and when the external force has a linear dependence on the position. We found that the power-law exponent in the dependence of the mean square displacement on time does not depend on the external force; this force changes only the anomalous diffusion coefficient. In addition, the external force having the power-law exponent different from 2η-1 limits the time interval where the anomalous diffusion occurs. We expect that the results obtained in this paper may be relevant for a more complete understanding of anomalous diffusion processes.

3.
Nat Commun ; 5: 5542, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25417851

ABSTRACT

Slow light based on the effect of electromagnetically induced transparency is of great interest due to its applications in low-light-level nonlinear optics and quantum information manipulation. The previous experiments all dealt with the single-component slow light. Here, we report the experimental demonstration of two-component or spinor slow light using a double-tripod atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. On the basis of the stored light, our data showed that the double-tripod scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. We experimentally demonstrated a possible application of the double-tripod scheme as quantum memory/rotator for the two-colour qubit. Our study also suggests that the spinor slow light is a better method than a widely used scheme in the nonlinear frequency conversion.

4.
Phys Rev Lett ; 100(20): 200405, 2008 May 23.
Article in English | MEDLINE | ID: mdl-18518513

ABSTRACT

Atom reflection is studied in the presence of a non-Abelian vector potential proportional to a spin-1/2 operator. The potential is produced by a relatively simple laser configuration for atoms with a tripod level scheme. We show that the atomic motion is described by two different dispersion branches with positive or negative chirality. As a consequence, atom reflection shows unusual features, since an incident wave may split into two reflected ones at a barrier, an ordinary specular reflection, and an additional nonspecular one. Remarkably, the latter wave can exhibit negative reflection and may become evanescent if the angle of incidence exceeds a critical value. These reflection properties are crucial for future designs in non-Abelian atom optics.

5.
Phys Rev Lett ; 101(26): 265302, 2008 Dec 31.
Article in English | MEDLINE | ID: mdl-19437649

ABSTRACT

We propose a method of constructing cold atom analogs of the spintronic device known as the Datta-Das transistor (DDT), which, despite its seminal conceptual role in spintronics, has never been successfully realized with electrons. We propose two alternative schemes for an atomic DDT, both of which are based on the experimental setup for tripod stimulated Raman adiabatic passage. Both setups involve atomic beams incident on a series of laser fields mimicking the relativistic spin-orbit coupling for electrons that is the operating mechanism of the DDT.

SELECTION OF CITATIONS
SEARCH DETAIL
...