Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 22(2): 594-604, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36688735

ABSTRACT

Protein quantitation via mass spectrometry relies on peptide proxies for the parent protein from which abundances are estimated. Owing to the variability in signal from individual peptides, accurate absolute quantitation usually relies on the addition of an external standard. Typically, this involves stable isotope-labeled peptides, delivered singly or as a concatenated recombinant protein. Consequently, the selection of the most appropriate surrogate peptides and the attendant design in recombinant proteins termed QconCATs are challenges for proteome science. QconCATs can now be built in a "a-la-carte" assembly method using synthetic biology: ALACATs. To assist their design, we present "AlacatDesigner", a tool that supports the peptide selection for recombinant protein standards based on the user's target protein. The user-customizable tool considers existing databases, occurrence in the literature, potential post-translational modifications, predicted miscleavage, predicted divergence of the peptide and protein quantifications, and ionization potential within the mass spectrometer. We show that peptide selections are enriched for good proteotypic and quantotypic candidates compared to empirical data. The software is freely available to use either via a web interface AlacatDesigner, downloaded as a Desktop application or imported as a Python package for the command line interface or in scripts.


Subject(s)
Peptides , Software , Peptides/chemistry , Mass Spectrometry , Proteome/metabolism , Recombinant Proteins
2.
Microb Genom ; 6(3)2020 03.
Article in English | MEDLINE | ID: mdl-32100706

ABSTRACT

The accessory genes of prokaryote and eukaryote pangenomes accumulate by horizontal gene transfer, differential gene loss, and the effects of selection and drift. We have developed Coinfinder, a software program that assesses whether sets of homologous genes (gene families) in pangenomes associate or dissociate with each other (i.e. are 'coincident') more often than would be expected by chance. Coinfinder employs a user-supplied phylogenetic tree in order to assess the lineage-dependence (i.e. the phylogenetic distribution) of each accessory gene, allowing Coinfinder to focus on coincident gene pairs whose joint presence is not simply because they happened to appear in the same clade, but rather that they tend to appear together more often than expected across the phylogeny. Coinfinder is implemented in C++, Python3 and R and is freely available under the GNU license from https://github.com/fwhelan/coinfinder.


Subject(s)
Genome , Software , Computational Biology , Phylogeny , Streptococcus pneumoniae/genetics
3.
PLoS One ; 13(10): e0205968, 2018.
Article in English | MEDLINE | ID: mdl-30372459

ABSTRACT

MOTIVATION: Modern analytical techniques such as LC-MS, GC-MS and NMR are increasingly being used to study the underlying dynamics of biological systems by tracking changes in metabolite levels over time. Such techniques are capable of providing information on large numbers of metabolites simultaneously, a feature that is exploited in non-targeted studies. However, since the dynamics of specific metabolites are unlikely to be known a priori this presents an initial subjective challenge as to where the focus of the investigation should be. Whilst a number of feed-forward software tools are available for manipulation of metabolomic data, no tool centralizes on clustering and focus is typically directed by a workflow that is chosen in advance. RESULTS: We present an interactive approach to time-course analyses and a complementary implementation in a software package, MetaboClust. This is presented through the analysis of two LC-MS time-course case studies on plants (Medicago truncatula and Alopecurus myosuroides). We demonstrate a dynamic, user-centric workflow to clustering with intrinsic visual feedback at all stages of analysis. The software is used to apply data correction, generate the time-profiles, perform exploratory statistical analysis and assign tentative metabolite identifications. Clustering is used to group metabolites in an unbiased manner, allowing pathway analysis to score metabolic pathways, based on their overlap with clusters showing interesting trends.


Subject(s)
Metabolic Networks and Pathways , Metabolomics/methods , Software , Biosynthetic Pathways , Brassinosteroids/metabolism , Cluster Analysis , Droughts , Medicago/metabolism , Phenotype , Plant Diseases , Poaceae/metabolism , Time Factors
4.
Metabolomics ; 14(10): 126, 2018 09 17.
Article in English | MEDLINE | ID: mdl-30830458

ABSTRACT

INTRODUCTION: Nitrogen-fixing legumes are invaluable crops, but are sensitive to physical and biological stresses. Whilst drought and infection from the soil-borne pathogen Fusarium oxysporum have been studied individually, their combined effects have not been widely investigated. OBJECTIVES: We aimed to determine the effect of combined stress using methods usually associated with transcriptomics to detect metabolic differences between treatment groups that could not be identified by more traditional means, such as principal component analysis and partial least squares discriminant analysis. METHODS: Liquid chromatography-high resolution mass spectrometry data from the root and leaves of model legume Medicago truncatula were analysed using Gaussian Process 2-Sample Test, k-means cluster analysis and temporal clustering by affinity propagation. RESULTS: Metabolic differences were detected: we identified known stress markers, including changes in concentration for sucrose and citric acid, and showed that combined stress can exacerbate the effect of drought. Changes in roots were found to be smaller than those in leaves, but differences due to Fusarium infection were identified. The transfer of sucrose from leaves to roots can be seen in the time series using transcriptomic techniques with the metabolomics time series. Other metabolite concentrations that change as a result of treatment include phosphoric acid, malic acid and tetrahydroxychalcone. CONCLUSIONS: Probing metabolomic data with transcriptomic tools provides new insights and could help to identify resilient plant varieties, thereby increasing future crop yield and improving food security.


Subject(s)
Cluster Analysis , Disease Resistance/genetics , Medicago truncatula/genetics , Medicago truncatula/metabolism , Metabolomics , Stress, Physiological/genetics , Transcriptome , Food Supply , Least-Squares Analysis , Principal Component Analysis
5.
Metabolomics ; 12: 56, 2016.
Article in English | MEDLINE | ID: mdl-27069441

ABSTRACT

The need for reproducible and comparable results is of increasing importance in non-targeted metabolomic studies, especially when differences between experimental groups are small. Liquid chromatography-mass spectrometry spectra are often acquired batch-wise so that necessary calibrations and cleaning of the instrument can take place. However this may introduce further sources of variation, such as differences in the conditions under which the acquisition of individual batches is performed. Quality control (QC) samples are frequently employed as a means of both judging and correcting this variation. Here we show that the use of QC samples can lead to problems. The non-linearity of the response can result in substantial differences between the recorded intensities of the QCs and experimental samples, making the required adjustment difficult to predict. Furthermore, changes in the response profile between one QC interspersion and the next cannot be accounted for and QC based correction can actually exacerbate the problems by introducing artificial differences. "Background correction" methods utilise all experimental samples to estimate the variation over time rather than relying on the QC samples alone. We compare non-QC correction methods with standard QC correction and demonstrate their success in reducing differences between replicate samples and their potential to highlight differences between experimental groups previously hidden by instrumental variation.

SELECTION OF CITATIONS
SEARCH DETAIL
...