ABSTRACT
Protein aggregation plays important roles in life science as, for instance, those associated to neurodegenerative diseases. Although extensive efforts have been done to elucidate all the possible variables related to the aggregation process, much has yet to be done to unveil the main pathways governing protein assembling. In the current work, we induce bovine serum albumin (BSA) association, at pH 3.7, by adding sodium dodecyl sulfate (SDS) and sodium perfluorooctanoate (SPFO) surfactants to BSA solution as promoters of protein aggregation. Firstly, we combine molecular dynamic simulations (MD) to obtain a partially unfolded state of BSA's monomer at the acid pH and small angle X-ray scattering (SAXS) to validate the model. Interestingly, we found by SAXS that at pH 3.7 BSA monomers coexist with dimers in surfactant-free solution. Upon SDS and SPFO addition, the partial unfolded BSA may evolve to large aggregates depending on surfactant concentration. The threshold occurs at 30:1 and 45:1 SDS:BSA and SPFO:BSA molar ratio, respectively, according to turbidity, Thioflavin (ThT) fluorescence, synchrotron radiation circular dichroism (SRCD), SAXS and scanning electron microscopy (SEM) experiments. BSA aggregates are larger in the presence of SDS and structurally more defined upon SPFO binding. Isothermal titration calorimetry (ITC) results give support to infer that both surfactants initially bind to the BSA macromolecule forming a complex. Then, these complexes self-associate towards supramolecular aggregates. Taking into account the physicochemical characteristics of both surfactants and also MD simulations we may suggest that the higher rigidity of the fluorinated chains in respect to hydrogenated ones is crucial to induce more ordered and smaller BSA's aggregates. Our results thus evidence that the ligand structural flexibility might be of a key importance in the pathway of protein aggregation and may pave the way to better understand the early steps of neurodegenerative disorders.
Subject(s)
Molecular Dynamics Simulation , Serum Albumin, Bovine/chemistry , Surface-Active Agents/chemistry , Animals , Caprylates/chemistry , Cattle , Fluorocarbons/chemistry , Halogenation , Hydrogenation , Particle Size , Protein Aggregates , Protein Unfolding , Scattering, Small Angle , Sodium Dodecyl Sulfate/chemistry , Surface Properties , X-Ray DiffractionABSTRACT
In the present work, we report on the synthesis of peptide functionalized magneto-plasmonic nanoparticles in a simple microfluidic platform. Superparamagnetic nanoparticles and gold nanorods were selected for this study. Magnetic nanoparticles were functionalized with peptide D1, which can bind selectively to toxic aggregates of the ß-amyloid peptide associated with Alzheimer's disease. Gold nanorods were functionalized with chitosan replacing the surfactant cetyltrimethylammonium bromide to reduce the cytotoxic effect. The selected microfluidic strategy yields structures with plasmonic and magnetic properties in a nanostructure. Cytotoxic assays with SH-SY5Y cells demonstrate that nanoparticles obtained by microfluidics do not affect cell viability at the studied concentrations. Additionally, these magneto-plasmonic nanoparticles inhibit fibril formation demonstrating that the magneto-plasmonic nanoparticles obtained by microfluidics could be applied for a potential treatment and diagnosis of Alzheimer's disease.