Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 65(9): 6643-6655, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35486541

ABSTRACT

Despite the clinical efficacy of epidermal growth factor receptor (EGFR) inhibitors, a subset of patients with non-small cell lung cancer displays insertion mutations in exon20 in EGFR and Her2 with limited treatment options. Here, we present the development and characterization of the novel covalent inhibitors LDC8201 and LDC0496 based on a 1H-pyrrolo[2,3-b]pyridine scaffold. They exhibited intense inhibitory potency toward EGFR and Her2 exon20 insertion mutations as well as selectivity over wild type EGFR and within the kinome. Complex crystal structures with the inhibitors and biochemical and cellular on-target activity document their favorable binding characteristics. Ultimately, we observed tumor shrinkage in mice engrafted with patient-derived EGFR-H773_V774insNPH mutant cells during treatment with LDC8201. Together, these results highlight the potential of covalent pyrrolopyridines as inhibitors to target exon20 insertion mutations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mutagenesis, Insertional , Mutation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
2.
Nat Commun ; 12(1): 3014, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021162

ABSTRACT

Members of the chromodomain-helicase-DNA binding (CHD) protein family are chromatin remodelers implicated in human pathologies, with CHD6 being one of its least studied members. We discovered a de novo CHD6 missense mutation in a patient clinically presenting the rare Hallermann-Streiff syndrome (HSS). We used genome editing to generate isogenic iPSC lines and model HSS in relevant cell types. By combining genomics with functional in vivo and in vitro assays, we show that CHD6 binds a cohort of autophagy and stress response genes across cell types. The HSS mutation affects CHD6 protein folding and impairs its ability to recruit co-remodelers in response to DNA damage or autophagy stimulation. This leads to accumulation of DNA damage burden and senescence-like phenotypes. We therefore uncovered a molecular mechanism explaining HSS onset via chromatin control of autophagic flux and genotoxic stress surveillance.


Subject(s)
Autophagy/physiology , DNA Damage , DNA Helicases/genetics , DNA Helicases/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Autophagy/genetics , Chromatin , Chromatin Assembly and Disassembly/genetics , DNA-Binding Proteins/metabolism , Epigenomics , Gene Editing , Gene Expression , Hallermann's Syndrome/genetics , Humans , Mutation , Phenotype
3.
EMBO Rep ; 20(4)2019 04.
Article in English | MEDLINE | ID: mdl-30886000

ABSTRACT

Cardiac dysfunctions dramatically increase with age. Revealing a currently unknown contributor to cardiac ageing, we report the age-dependent, cardiac-specific accumulation of the lysosphingolipid sphinganine (dihydrosphingosine, DHS) as an evolutionarily conserved hallmark of the aged vertebrate heart. Mechanistically, the DHS-derivative sphinganine-1-phosphate (DHS1P) directly inhibits HDAC1, causing an aberrant elevation in histone acetylation and transcription levels, leading to DNA damage. Accordingly, the pharmacological interventions, preventing (i) the accumulation of DHS1P using SPHK2 inhibitors, (ii) the aberrant increase in histone acetylation using histone acetyltransferase (HAT) inhibitors, (iii) the DHS1P-dependent increase in transcription using an RNA polymerase II inhibitor, block DHS-induced DNA damage in human cardiomyocytes. Importantly, an increase in DHS levels in the hearts of healthy young adult mice leads to an impairment in cardiac functionality indicated by a significant reduction in left ventricular fractional shortening and ejection fraction, mimicking the functional deterioration of aged hearts. These molecular and functional defects can be partially prevented in vivo using HAT inhibitors. Together, we report an evolutionarily conserved mechanism by which increased DHS levels drive the decline in cardiac health.


Subject(s)
Aging/genetics , Aging/metabolism , Genetic Variation , Genomic Instability , Myocardium/metabolism , Sphingolipids/metabolism , Animals , Curcumin/chemistry , Curcumin/pharmacology , DNA Damage/drug effects , Energy Metabolism , Epigenesis, Genetic , Evolution, Molecular , Fundulidae , Gene Expression Profiling , Gene Expression Regulation , Genomics/methods , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/metabolism , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histones/metabolism , Humans , Models, Molecular , Myocytes, Cardiac/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Structure-Activity Relationship , Vertebrates/genetics , Vertebrates/metabolism
4.
Cell Stem Cell ; 24(2): 318-327.e8, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30554961

ABSTRACT

Human protein-coding genes are often accompanied by divergently transcribed non-coding RNAs whose functions, especially in cell fate decisions, are poorly understood. Using an hESC-based cardiac differentiation model, we define a class of divergent lncRNAs, termed yin yang lncRNAs (yylncRNAs), that mirror the cell-type-specific expression pattern of their protein-coding counterparts. yylncRNAs are preferentially encoded from the genomic loci of key developmental cell fate regulators. Most yylncRNAs are spliced polyadenylated transcripts showing comparable expression patterns in vivo in mouse and in human embryos. Signifying their developmental function, the key mesoderm specifier BRACHYURY (T) is accompanied by yylncT, which localizes to the active T locus during mesoderm commitment. yylncT binds the de novo DNA methyltransferase DNMT3B, and its transcript is required for activation of the T locus, with yylncT depletion specifically abolishing mesodermal commitment. Collectively, we report a lncRNA-mediated regulatory layer safeguarding embryonic cell fate transitions.


Subject(s)
Cell Lineage/genetics , Fetal Proteins/metabolism , Mesoderm/metabolism , Pluripotent Stem Cells/metabolism , RNA, Long Noncoding/genetics , T-Box Domain Proteins/metabolism , Transcription, Genetic , Animals , Cell Differentiation , Cell Line , DNA (Cytosine-5-)-Methyltransferases/metabolism , Genetic Loci , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Mice , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , DNA Methyltransferase 3B
5.
Stem Cells ; 35(4): 859-871, 2017 04.
Article in English | MEDLINE | ID: mdl-27870307

ABSTRACT

Gap junctional intercellular communication (GJIC) has been suggested to be involved in early embryonic development but the actual functional role remained elusive. Connexin (Cx) 43 and Cx45 are co-expressed in embryonic stem (ES) cells, form gap junctions and are considered to exhibit adhesive function and/or to contribute to the establishment of defined communication compartments. Here, we describe the generation of Cx43/Cx45-double deficient mouse ES cells to achieve almost complete breakdown of GJIC. Cre-loxP induced deletion of both, Cx43 and Cx45, results in a block of differentiation in embryoid bodies (EBs) without affecting pluripotency marker expression and proliferation in ES cells. We demonstrate that GJIC-incompetent ES cells fail to form primitive endoderm in EB cultures, representing the inductive key step of further differentiation events. Lentiviral overexpression of either Cx43 or Cx45 in Cx43/45 mutants rescued the observed phenotype, confirming the specificity and indicating a partially redundant function of both connexins. Upon differentiation GJIC-incompetent ES cells exhibit a strikingly altered subcellular localization pattern of the transcription factor NFATc3. Control EBs exhibit significantly more activated NFATc3 in cellular nuclei than mutant EBs suggesting that Cx-mediated communication is needed for synchronized NFAT activation to induce orchestrated primitive endoderm formation. Moreover, pharmacological inhibition of NFATc3 activation by Cyclosporin A, a well-described inhibitor of calcineurin, phenocopies the loss of GJIC in control cells. Stem Cells 2017;35:859-871.


Subject(s)
Cell Communication , Embryoid Bodies/cytology , Embryoid Bodies/metabolism , Endoderm/embryology , Endoderm/metabolism , Gap Junctions/metabolism , Animals , Apoptosis , Biomarkers/metabolism , Calcineurin/metabolism , Cell Differentiation , Cell Proliferation , Connexin 43/metabolism , Connexins/metabolism , Endoderm/cytology , Gastrulation , Lentivirus/metabolism , Mice , Mutagenesis/genetics , NFATC Transcription Factors/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...