Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(5)2021 01.
Article in English | MEDLINE | ID: mdl-33514540

ABSTRACT

Natural genetic variation affects circadian rhythms across the evolutionary tree, but the underlying molecular mechanisms are poorly understood. We investigated population-level, molecular circadian clock variation by generating >700 tissue-specific transcriptomes of Drosophila melanogaster (w1118 ) and 141 Drosophila Genetic Reference Panel (DGRP) lines. This comprehensive circadian gene expression atlas contains >1700 cycling genes including previously unknown central circadian clock components and tissue-specific regulators. Furthermore, >30% of DGRP lines exhibited aberrant circadian gene expression, revealing abundant genetic variation-mediated, intertissue circadian expression desynchrony. Genetic analysis of one line with the strongest deviating circadian expression uncovered a novel cry mutation that, as shown by protein structural modeling and brain immunohistochemistry, disrupts the light-driven flavin adenine dinucleotide cofactor photoreduction, providing in vivo support for the importance of this conserved photoentrainment mechanism. Together, our study revealed pervasive tissue-specific circadian expression variation with genetic variants acting upon tissue-specific regulatory networks to generate local gene expression oscillations.


Subject(s)
Circadian Clocks , Drosophila Proteins , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...