Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 90(3): 911-20, 2011 May.
Article in English | MEDLINE | ID: mdl-21311879

ABSTRACT

The effects of foaming on the production of the hydrophobin protein HFBII by fermentation have been investigated at two different scales. The foaming behaviour was characterised in standard terms of the product enrichment and recovery achieved. Additional specific attention was given to the rate at which foam, product and biomass overflowed from the fermentation system in order to assess the utility of foam fractionation for HFBII recovery. HFBII was expressed as an extracellular product during fed-batch fermentations with a genetically modified strain of Saccharomyces cerevisiae, which were carried out with and without the antifoam Struktol J647. In the presence of antifoam, HFBII production is shown to be largely unaffected by process scale, with similar yields of HFBII on dry matter obtained. More variation in HFBII yield was observed between fermentations without antifoam. In fermentations without antifoam, a maximum HFBII enrichment in the foam phase of 94.7 was measured with an overall enrichment, averaged over all overflowed material throughout the whole fermentation, of 54.6 at a recovery of 98.1%, leaving a residual HFBII concentration of 5.3 mg L(-1) in the fermenter. It is also shown that uncontrolled foaming resulted in reduced concentration of biomass in the fermenter vessel, affecting total production. This study illustrates the potential of foam fractionation for efficient recovery of HFBII through simultaneous high enrichment and recovery which are greater than those reported for similar systems.


Subject(s)
Antifoaming Agents/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism , Fermentation , Fungal Proteins/genetics , Saccharomyces cerevisiae/genetics , Trichoderma/genetics
2.
Langmuir ; 23(15): 7995-8002, 2007 Jul 17.
Article in English | MEDLINE | ID: mdl-17580918

ABSTRACT

We report the remarkable surface behavior of class II hydrophobin proteins HFBI and HFBII from Trichoderma reesei and the resulting effect that these proteins have on the stability of air bubbles to the process of disproportionation. The surface properties were studied using surface tensiometry and surface shear rheology. Surface tensiometry data show that hydrophobins are very surface active proteins, reducing the surface tension to approximately 30 mN m-1. The rate at which the hydrophobins adsorb at the surface may also be related to the self-assembly behavior in aqueous solution. We further show that hydrophobins form air/water surfaces with high elasticity, the magnitude of which is well in excess of that of surface layers formed by other common proteins used as foam or emulsion stabilizers. The measured surface properties translate to the stability of bubbles with adsorbed hydrophobin, and in this study, we demonstrate the ability of hydrophobin to have a dramatic effect on the rate of disproportionation in some simple bubble dissolution studies.


Subject(s)
Fungal Proteins/chemistry , Phase Transition , Trichoderma/chemistry , Surface Tension
SELECTION OF CITATIONS
SEARCH DETAIL
...