Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38003684

ABSTRACT

Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors-fear conditioning and swim stress-in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized that male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map onto any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate that reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.


Subject(s)
Fear , Animals , Female , Male , Mice , Corticosterone/analysis , Extinction, Psychological , Membrane Transport Proteins , Signal Transduction
2.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37693400

ABSTRACT

Certain life stressors having enduring physiological and behavioral consequences, in part by eliciting dramatic signaling shifts in monoamine neurotransmitters. High monoamine levels can overwhelm selective transporters like the serotonin transporter. This is when polyspecific transporters like plasma membrane monoamine transporter (PMAT, Slc29a4) are hypothesized to contribute most to monoaminergic signaling regulation. Here, we employed two distinct counterbalanced stressors - fear conditioning, and swim stress - in mice to systematically determine how reductions in PMAT function affect heterotypic stressor responsivity. We hypothesized male heterozygotes would exhibit augmented stressor responses relative to female heterozygotes. Decreased PMAT function enhanced context fear expression, an effect unexpectedly obscured by a sham stress condition. Impaired cued fear extinction retention and enhanced context fear expression in males were conversely unmasked by a sham swim condition. Abrogated corticosterone levels in male heterozygotes that underwent swim stress after context fear conditioning did not map on to any measured behaviors. In sum, male heterozygous mouse fear behaviors proved malleable in response to preceding stressor or sham stress exposure. Combined, these data indicate reduced male PMAT function elicits a form of stress-responsive plasticity. Future studies should assess how PMAT is differentially affected across sexes and identify downstream consequences of the stress-shifted corticosterone dynamics.

3.
J Endod ; 46(8): 1144-1148, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32525056

ABSTRACT

The worldwide coronavirus disease 2019 pandemic has greatly impacted dental practice. Issues confronting practicing dentists include possible transmission of disease by droplets/aerosol or contact with contaminated surfaces. Dentists are at increased risk because of their proximity to the oropharynx. In an effort to reduce potential exposure to aerosols generated during treatment, a device has been developed in which a polycarbonate shield is mounted to the dental operating microscope with an attached high-velocity vacuum hose. Anemometer measurements show an exhaust outflow of 3.9 ft/min at a position approximating the patient's oropharynx. More research may be warranted using this or similar approaches to mitigate aerosol transmission.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Aerosols , COVID-19 , Humans , Oropharynx , SARS-CoV-2
4.
Article in English | MEDLINE | ID: mdl-31611348

ABSTRACT

It is often difficult to cure endocarditis, osteomyelitis, and device-associated infections caused by Gram-positive pathogens, despite therapy with clinically appropriate antibiotics. This may be due to antibiotic tolerance or resistance development. Acyldepsipeptides (ADEPs) are a class of bactericidal compounds active against a variety of clinically important Gram-positive bacteria, including staphylococci, streptococci, and enterococci. ADEPs activate caseinolytic protease P (ClpP), killing high-density, nondividing cultures of bacteria that are tolerant to approved classes of antibiotics. Acyldepsipeptide analog 4 (ADEP4) was active against a panel of drug-resistant Gram-positive pathogens in MIC assays, with no preexisting resistance detected. Killing of stationary-phase cultures was observed when ADEP4 was combined with multiple classes of approved antibiotics. Additionally, a hollow-fiber infection model was used to assess the effects of ADEP4 antibiotic combinations on bacterial killing and resistance development. These studies were performed on high-density cultures of methicillin-resistant S. aureus (MRSA), methicillin-susceptible S. aureus (MSSA), and vancomycin-resistant Enterococcus faecalis (VRE). None of the approved antibiotics linezolid, ampicillin, and oxacillin tested alone had bactericidal activity under these conditions. ADEP4 initially caused killing, but regrowth of the culture was apparent within 96 h due to resistance. Combinations of ADEP4 with linezolid or oxacillin caused substantially improved killing of MRSA or MSSA cultures, respectively, and no regrowth due to resistance was observed. The combination of ADEP4 and ampicillin eradicated cultures of VRE to the limit of detection within 52 h. These data suggest that combining ClpP activators with traditional antibiotics may be a good strategy to treat complicated Gram-positive infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ampicillin/pharmacology , Depsipeptides/pharmacology , Enterococcus faecalis/drug effects , Gram-Positive Bacteria/drug effects , Linezolid/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Oxacillin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...