Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Chem Neurosci ; 14(3): 435-457, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36655909

ABSTRACT

Degeneration of the cholinergic basal forebrain is implicated in the development of cognitive deficits and sleep/wake architecture disturbances in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Indirect-acting muscarinic cholinergic receptor agonists, such as acetylcholinesterase inhibitors (AChEIs), remain the only FDA-approved treatments for the cognitive impairments observed in AD that target the cholinergic system. Novel direct-acting muscarinic cholinergic receptor agonists also improve cognitive performance in young and aged preclinical species and are currently under clinical development for AD. However, little is known about the effects of direct-acting muscarinic cholinergic receptor agonists on disruptions of sleep/wake architecture and arousal observed in nonpathologically aged rodents, nonhuman primates, and clinical populations. The purpose of the present study was to provide the first assessment of the effects of the direct-acting M1/M4-preferring muscarinic cholinergic receptor agonist xanomeline on sleep/wake architecture and arousal in young and nonpathologically aged mice, in comparison with the AChEI donepezil, when dosed in either the active or inactive phase of the circadian cycle. Xanomeline produced a robust reversal of both wake fragmentation and disruptions in arousal when dosed in the active phase of nonpathologically aged mice. In contrast, donepezil had no effect on either age-related wake fragmentation or arousal deficits when dosed during the active phase. When dosed in the inactive phase, both xanomeline and donepezil produced increases in wake and arousal and decreases in nonrapid eye movement sleep quality and quantity in nonpathologically aged mice. Collectively, these novel findings suggest that direct-acting muscarinic cholinergic agonists such as xanomeline may provide enhanced wakefulness and arousal in nonpathological aging, MCI, and AD patient populations.


Subject(s)
Arousal , Muscarinic Agonists , Neurocognitive Disorders , Receptor, Muscarinic M1 , Receptor, Muscarinic M4 , Sleep , Animals , Mice , Acetylcholinesterase/metabolism , Arousal/drug effects , Arousal/physiology , Cholinergic Agents/pharmacology , Cholinergic Agents/therapeutic use , Donepezil/pharmacology , Donepezil/therapeutic use , Muscarinic Agonists/pharmacology , Muscarinic Agonists/therapeutic use , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M4/agonists , Receptor, Muscarinic M4/metabolism , Thiadiazoles/pharmacology , Thiadiazoles/therapeutic use , Wakefulness/drug effects , Wakefulness/physiology , Sleep/drug effects , Sleep/physiology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Neurocognitive Disorders/drug therapy , Neurocognitive Disorders/metabolism
2.
Neuropsychopharmacology ; 45(13): 2219-2228, 2020 12.
Article in English | MEDLINE | ID: mdl-32868847

ABSTRACT

Degeneration of basal forebrain cholinergic circuitry represents an early event in the development of Alzheimer's disease (AD). These alterations in central cholinergic function are associated with disruptions in arousal, sleep/wake architecture, and cognition. Changes in sleep/wake architecture are also present in normal aging and may represent a significant risk factor for AD. M1 muscarinic acetylcholine receptor (mAChR) positive allosteric modulators (PAMs) have been reported to enhance cognition across preclinical species and may also provide beneficial effects for age- and/or neurodegenerative disease-related changes in arousal and sleep. In the present study, electroencephalography was conducted in young animals (mice, rats and nonhuman primates [NHPs]) and in aged mice to examine the effects of the selective M1 PAM VU0453595 in comparison with the acetylcholinesterase inhibitor donepezil, M1/M4 agonist xanomeline (in NHPs), and M1 PAM BQCA (in rats) on sleep/wake architecture and arousal. In young wildtype mice, rats, and NHPs, but not in M1 mAChR KO mice, VU0453595 produced dose-related increases in high frequency gamma power, a correlate of arousal and cognition enhancement, without altering duration of time across all sleep/wake stages. Effects of VU0453595 in NHPs were observed within a dose range that did not induce cholinergic-mediated adverse effects. In contrast, donepezil and xanomeline increased time awake in rodents and engendered dose-limiting adverse effects in NHPs. Finally, VU0453595 attenuated age-related decreases in REM sleep duration in aged wildtype mice. Development of M1 PAMs represents a viable strategy for attenuating age-related and dementia-related pathological disturbances of sleep and arousal.


Subject(s)
Neurodegenerative Diseases , Rodentia , Allosteric Regulation , Animals , Arousal , Mice , Primates , Pyridines , Pyrroles , Rats , Receptor, Muscarinic M1 , Sleep
3.
Neurotherapeutics ; 16(3): 649-665, 2019 07.
Article in English | MEDLINE | ID: mdl-31364065

ABSTRACT

There are 3 common physiological estrogens, of which estradiol (E2) is seen to decline rapidly over the menopausal transition. This decline in E2 has been associated with a number of changes in the brain, including cognitive changes, effects on sleep, and effects on mood. These effects have been demonstrated in both rodent and non-human preclinical models. Furthermore, E2 interactions have been indicated in a number of neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, and depression. In normal brain aging, there are a number of systems that undergo changes and a number of these show interactions with E2, particularly the cholinergic system, the dopaminergic system, and mitochondrial function. E2 treatment has been shown to ameliorate some of the behavioral and morphological changes seen in preclinical models of menopause; however, in clinical populations, the effects of E2 treatment on cognitive changes after menopause are mixed. The future use of sex hormone treatment will likely focus on personalized or precision medicine for the prevention or treatment of cognitive disturbances during aging, with a better understanding of who may benefit from such treatment.


Subject(s)
Brain/metabolism , Cognitive Aging , Estrogens/metabolism , Animals , Brain/physiology , Cognitive Aging/physiology , Estrogens/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...