Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 615(7954): 799-800, 2023 03.
Article in English | MEDLINE | ID: mdl-36991185
2.
Nature ; 564(7734): 53-58, 2018 12.
Article in English | MEDLINE | ID: mdl-30455421

ABSTRACT

Meltwater from the Antarctic Ice Sheet is projected to cause up to one metre of sea-level rise by 2100 under the highest greenhouse gas concentration trajectory (RCP8.5) considered by the Intergovernmental Panel on Climate Change (IPCC). However, the effects of meltwater from the ice sheets and ice shelves of Antarctica are not included in the widely used CMIP5 climate models, which introduces bias into IPCC climate projections. Here we assess a large ensemble simulation of the CMIP5 model 'GFDL ESM2M' that accounts for RCP8.5-projected Antarctic Ice Sheet meltwater. We find that, relative to the standard RCP8.5 scenario, accounting for meltwater delays the exceedance of the maximum global-mean atmospheric warming targets of 1.5 and 2 degrees Celsius by more than a decade, enhances drying of the Southern Hemisphere and reduces drying of the Northern Hemisphere, increases the formation of Antarctic sea ice (consistent with recent observations of increasing Antarctic sea-ice area) and warms the subsurface ocean around the Antarctic coast. Moreover, the meltwater-induced subsurface ocean warming could lead to further ice-sheet and ice-shelf melting through a positive feedback mechanism, highlighting the importance of including meltwater effects in simulations of future climate.


Subject(s)
Freezing , Global Warming/statistics & numerical data , Ice Cover/chemistry , Seawater/analysis , Air , Antarctic Regions , Atmosphere , Hot Temperature , Oceans and Seas , Rain
3.
J Environ Radioact ; 165: 144-150, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27721136

ABSTRACT

The long-lived radionuclide 129I (half-life: 15.7 × 106 yr) is well-known as a useful environmental tracer. At present, the global 129I in surface water is about 1-2 orders of magnitude higher than pre-1960 levels. Since the 1990s, anthropogenic 129I produced from industrial nuclear fuels reprocessing plants has been the primary source of 129I in marine surface waters of the Atlantic and around the globe. Here we present four coral 129I time series records from: 1) Con Dao and 2) Xisha Islands, the South China Sea, 3) Rabaul, Papua New Guinea and 4) Guam. The Con Dao coral 129I record features a sudden increase in 129I in 1959. The Xisha coral shows similar peak values for 129I as the Con Dao coral, punctuated by distinct low values, likely due to the upwelling in the central South China Sea. The Rabaul coral features much more gradual 129I increases in the 1970s, similar to a published record from the Solomon Islands. The Guam coral 129I record contains the largest measured values for any site, with two large peaks, in 1955 and 1959. Nuclear weapons testing was the primary 129I source in the Western Pacific in the latter part of the 20th Century, notably from testing in the Marshall Islands. The Guam 1955 peak and Con Dao 1959 increases are likely from the 1954 Castle Bravo test, and the Operation Hardtack I test is the most likely source of the 1959 peak observed at Guam. Radiogenic iodine found in coral was carried primarily through surface ocean currents. The coral 129I time series data provide a broad picture of the surface distribution and depth penetration of 129I in the Pacific Ocean over the past 60 years.


Subject(s)
Anthozoa/chemistry , Iodine Radioisotopes/analysis , Radiation Monitoring , Water Movements , Water Pollutants, Radioactive/analysis , Animals , Half-Life , Islands , Models, Chemical , Nuclear Weapons , Pacific Ocean , Seawater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...