Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 19725, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36385108

ABSTRACT

The rat hindlimb is a frequently utilized pre-clinical model system to evaluate injuries and pathologies impacting the hindlimbs. These studies have demonstrated the translational potential of this model but have typically focused on the force generating capacity of target muscles as the primary evaluative outcome. Historically, human studies investigating extremity injuries and pathologies have utilized biomechanical analysis to better understand the impact of injury and extent of recovery. In this study, we expand that full biomechanical workup to a rat model in order to characterize the spatiotemporal parameters, ground reaction forces, 3-D joint kinematics, 3-D joint kinetics, and energetics of gait in healthy rats. We report data on each of these metrics that meets or exceeds the standards set by the current literature and are the first to report on all these metrics in a single set of animals. The methodology and findings presented in this study have significant implications for the development and clinical application of the improved regenerative therapeutics and rehabilitative therapies required for durable and complete functional recovery from extremity traumas, as well as other musculoskeletal pathologies.


Subject(s)
Rodentia , Walking , Humans , Rats , Animals , Biomechanical Phenomena , Walking/physiology , Hindlimb/physiology , Lower Extremity
2.
Article in English | MEDLINE | ID: mdl-31275932

ABSTRACT

There is currently a substantial volume of research underway to develop more effective approaches for the regeneration of functional muscle tissue as treatment for volumetric muscle loss (VML) injury, but few studies have evaluated the relationship between injury and the biomechanics required for normal function. To address this knowledge gap, the goal of this study was to develop a novel method to quantify the changes in gait of rats with tibialis anterior (TA) VML injuries. This method should be sensitive enough to identify biomechanical and kinematic changes in response to injury as well as during recovery. Control rats and rats with surgically-created VML injuries were affixed with motion capture markers on the bony landmarks of the back and hindlimb and were recorded walking on a treadmill both prior to and post-surgery. Data collected from the motion capture system was exported for post-hoc analysis in OpenSim and Matlab. In vivo force testing indicated that the VML injury was associated with a significant deficit in force generation ability. Analysis of joint kinematics showed significant differences at all three post-surgical timepoints and gait cycle phase shifting, indicating augmented gait biomechanics in response to VML injury. In conclusion, this method identifies and quantifies key differences in the gait biomechanics and joint kinematics of rats with VML injuries and allows for analysis of the response to injury and recovery. The comprehensive nature of this method opens the door for future studies into dynamics and musculoskeletal control of injured gait that can inform the development of regenerative technologies focused on the functional metrics that are most relevant to recovery from VML injury.

3.
Appl Bionics Biomech ; 2017: 2638908, 2017.
Article in English | MEDLINE | ID: mdl-29238158

ABSTRACT

OBJECTIVE: Barefoot technology shoes are becoming increasingly popular, yet modifications are still needed. The present study aims to gain valuable insights by comparing barefoot walking to neutral shoe walking in a healthy youth population. METHODS: 28 healthy university students (22 females and 6 males) were recruited to walk on a 10-meter walkway both barefoot and in neutral running shoes at their comfortable walking speed. Full step cycle kinematic and kinetic data were collected using an 8-camera motion capture system. RESULTS: In the early stance phase, the knee extension moment (MK1), the first peak absorbed joint power at the knee joint (PK1), and the flexion angle of knee/dorsiflexion angle of the ankle were significantly reduced when walking in neutral running shoes. However, in the late stance, barefoot walking resulted in decreased hip joint flexion moment (MH2), second peak extension knee moment (MK3), hip flexors absorbed power (PH2), hip flexors generated power (PH3), second peak absorbed power by knee flexors (PK2), and second peak anterior-posterior component of joint force at the hip (APFH2), knee (APFK2), and ankle (APFA2). CONCLUSIONS: These results indicate that it should be cautious to discard conventional elements from future running shoe designs and rush to embrace the barefoot technology fashion.

4.
Neural Regen Res ; 10(12): 2072-80, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26889202

ABSTRACT

Gait disorders drastically affect the quality of life of stroke survivors, making post-stroke rehabilitation an important research focus. Noninvasive brain stimulation has potential in facilitating neuroplasticity and improving post-stroke gait impairment. However, a large inter-individual variability in the response to noninvasive brain stimulation interventions has been increasingly recognized. We first review the neurophysiology of human gait and post-stroke neuroplasticity for gait recovery, and then discuss how noninvasive brain stimulation techniques could be utilized to enhance gait recovery. While post-stroke neuroplasticity for gait recovery is characterized by use-dependent plasticity, it evolves over time, is idiosyncratic, and may develop maladaptive elements. Furthermore, noninvasive brain stimulation has limited reach capability and is facilitative-only in nature. Therefore, we recommend that noninvasive brain stimulation be used adjunctively with rehabilitation training and other concurrent neuroplasticity facilitation techniques. Additionally, when noninvasive brain stimulation is applied for the rehabilitation of gait impairment in stroke survivors, stimulation montages should be customized according to the specific types of neuroplasticity found in each individual. This could be done using multiple mapping techniques.

5.
Clin Biomech (Bristol, Avon) ; 27(3): 287-91, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22018422

ABSTRACT

BACKGROUND: Studies suggest that 50% of children with cerebral palsy are prescribed ankle foot orthoses. One of the aims of ankle foot orthosis use is to aid in walking. This research examined the effects that ankle foot orthoses have on the energy recovery and the mechanical work performed by children with cerebral palsy during walking. METHODS: Twenty-one children with spastic diplegia walked with and without their prescribed bilateral ankle foot orthoses. Ten of the subjects wore articulated (hinged) orthoses and 11 subjects wore solid orthoses. Three dimensional kinematic data were collected and between and within group repeated measures ANOVAs were applied to the dependent measures. FINDINGS: The results were similar for both groups. There was an increase in stride length, energy recovery, and potential energy and the kinetic energy variation. There was no change in the mechanical work performed to walk or the normalized center of mass vertical excursion. Unfortunately, the increase in energy recovery did not alter the external work, as it was offset by increased variation in the potential and kinetic energies of the center of mass. There was a great deal of variability in the measured work, with both large increases and decreases in the work of individual subjects when wearing orthoses. INTERPRETATION: These results suggest that current ankle foot orthoses can reduce the work to walk, but do not do so for many children with cerebral palsy. This research suggests that ankle foot orthosis prescription could be aided by measuring the mechanical work during walking.


Subject(s)
Ankle Joint/physiopathology , Cerebral Palsy/physiopathology , Cerebral Palsy/rehabilitation , Energy Metabolism , Gait , Models, Biological , Orthotic Devices , Cerebral Palsy/complications , Child , Computer Simulation , Female , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/physiopathology , Gait Disorders, Neurologic/rehabilitation , Humans , Male , Treatment Outcome
6.
Hum Mov Sci ; 29(1): 114-24, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19889468

ABSTRACT

Recently, researchers in robotics have used regulation of the angular momentum of body segments about the total body center of mass (CoM) to develop control strategies for bipedal gait. This work was spurred by reports finding that for a "large class" of human movement tasks, including standing, walking, and running the angular momentum is conserved about the CoM. However, there is little data presented to justify this position. This paper describes an analysis of 11 male adults walking overground at 0.7, 1.0, and 1.3 times their comfortable walking speed (CWS). The normalized angular momenta about the body CoM of 12 body segments were computed about all three coordinate axes. The normalized angular momenta were both small (<0.03) and highly regulated for all subjects and walking speed with extrema that negatively correlated with walking speeds. It was found that the angular momentum of the body about its CoM during walking could be described by a small number of principal components. For the adult walkers the first three principal components accounted for more than 97% of the variability of the angular momentum about each of the three principal axes at all walking speeds. In addition, it was found that the orthogonal principal components at each speed and for each subject were similar, i.e., the vectors of the principal components at each speed and for each subject were co-linear.


Subject(s)
Models, Psychological , Psychomotor Performance/physiology , Reaction Time , Walking , Adult , Body Mass Index , Humans , Male
7.
Exp Brain Res ; 197(2): 185-97, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19578841

ABSTRACT

We studied the coordination of body segments during treadmill walking. Specifically, we used the uncontrolled manifold hypothesis framework to quantify the segmental angular momenta (SAM) synergies that stabilize (i.e., reduce the across trials variability) the whole body angular momentum (WBAM). Seven male subjects were asked to walk over a treadmill at their comfortable walking speed. A 17-segment model, fitted to the subject's anthropometry, was used to reconstruct their kinematics and to compute the SAM and WBAM in three dimensions. A principal component analysis was used to represent the 17 SAM by the magnitudes of the first five principal components. An index of synergy (DeltaV) was used to quantify the co-variations of these principal components with respect to their effect on the WBAM. Positive values of DeltaV were observed in the sagittal plane during the swing phase. They reflected the synergies among the SAM that stabilized (i.e., made reproducible from stride to stride) the WBAM. Negative values of DeltaV were observed in both frontal and sagittal plane during the double support phase. They were interpreted as "anti-synergies", i.e., a particular organization of the SAM used to adjust the WBAM. Based on these results, we demonstrated that the WBAM is a variable whose value is regulated by the CNS during walking activities, and that the nature of the WBAM control changed between swing phase and double support phase. These results can be linked with humanoid gait controls presently employed in robotics.


Subject(s)
Walking , Adult , Algorithms , Analysis of Variance , Biomechanical Phenomena , Humans , Male , Middle Aged , Models, Biological , Principal Component Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...