Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36561642

ABSTRACT

Background: Recently, the in vitro blood brain barrier (BBB) models derived from human pluripotent stem cells have been given extensive attention in therapeutics due to the implications it has with the health of the central nervous system. It is essential to create an accurate BBB model in vitro in order to better understand the properties of the BBB and how it can respond to inflammatory stimulation and be passed by targeted or non-targeted cell therapeutics, more specifically extracellular vesicles. Methods: Brain-specific pericytes (iPCs) were differentiated from iPSK3 cells using dual SMAD signaling inhibitors and Wnt activation plus fibroblast growth factor 2 (FGF-2). The derived cells were characterized by immunostaining, flow cytometry and RT-PCR. In parallel, blood vessels organoids were derived using Wnt activation, BMP4, FGF2, VEGF and SB431542. The organoids were replated and treated with retinoic acid to enhance the blood brain barrier (BBB) features in the differentiated brain endothelial cells (iECs). Co-culture was performed for the iPCs and iECs in transwell system and 3-D microfluidics channels. Results: The derived iPCs expressed common markers PDGFRb and NG2, as well as brain-specific genes FOXF2, ABCC9, KCNJ8, and ZIC1. The derived iECs expressed common endothelial cell markers CD31, VE-cadherin, as well as BBB-associated genes BRCP, GLUT-1, PGP, ABCC1, OCLN, SLC2A1. The co-culture of the two cell types responded to the stimulation of amyloid ß42 oligomers by the upregulation of expression of TNFa, IL6, NFKB, Casp3, SOD2 and TP53. The co-culture also showed the property of trans-endothelial electrical resistance. The proof-of-concept vascularization strategy was demonstrated in a 3-D microfluidics-based device. Conclusion: The derived iPCs and iECs have brain-specific properties and the co-culture of iPCs and iECs provides an in vitro BBB model that show inflammatory response. This study has significance in establishing micro-physiological systems for neurological disease modeling and drug screening.

2.
J Biol Chem ; 290(14): 8834-48, 2015 Apr 03.
Article in English | MEDLINE | ID: mdl-25670856

ABSTRACT

Human embryonic stem cells (hESCs) have been routinely treated with bone morphogenetic protein and/or inhibitors of activin/nodal signaling to obtain cells that express trophoblast markers. Trophoblasts can terminally differentiate to either extravillous trophoblasts or syncytiotrophoblasts. The signaling pathways that govern the terminal fate of these trophoblasts are not understood. We show that activin/nodal signaling switches the terminal fate of these hESC-derived trophoblasts. Inhibition of activin/nodal signaling leads to formation of extravillous trophoblast, whereas loss of activin/nodal inhibition leads to the formation of syncytiotrophoblasts. Also, the ability of hESCs to form bona fide trophoblasts has been intensely debated. We have examined hESC-derived trophoblasts in the light of stringent criteria that were proposed recently, such as hypomethylation of the ELF5-2b promoter region and down-regulation of HLA class I antigens. We report that trophoblasts that possess these properties can indeed be obtained from hESCs.


Subject(s)
Activins/metabolism , Cell Differentiation , Embryonic Stem Cells/metabolism , Nodal Protein/metabolism , Signal Transduction , Trophoblasts/metabolism , Base Sequence , Cell Lineage , DNA Methylation , DNA Primers , Embryonic Stem Cells/cytology , Ephrin-B2/genetics , Humans , Polymerase Chain Reaction , Promoter Regions, Genetic , Trophoblasts/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...