Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 35(30)2023 May 05.
Article in English | MEDLINE | ID: mdl-37084743

ABSTRACT

We study the magnetic phase diagram of an ensemble of dipolar hard spheres (DHSs) with or without uniaxial anisotropy and frozen in position on a disordered structure by tempered Monte Carlo simulations. The crucial point is to consider an anisotropic structure, obtained from the liquid state of the DHS fluid, frozen in its polarized state at low temperature. The freezing inverse temperatureßfdetermines the degree of anisotropy of the structure which is quantified through a structural nematic order parameter,λs. The case of the non zero uniaxial anisotropy is considered only in its infinitely strong strength limit where the system transforms in a dipolar Ising model (DIM). The important finding of this work is that both the DHS and the DIM with a frozen structure build in this way present a ferromagnetic phase at volume fractions below the threshold value where the corresponding isotropic DHS systems exhibit a spin glass phase at low temperature.

2.
Nanoscale ; 12(47): 24020-24029, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33245306

ABSTRACT

We report the elaboration of supercrystals made up of dodecanoic acid-coated 8.1 nm-Co nanocrystals with controlled supercrystallinity, morphology and magnetic properties. Supercrystal growth is controlled using a solvent-mediated ligand-ligand interaction strategy. Either face-centered cubic supercrystalline films or single colloidal crystals composed of cobalt nanocrystals are obtained. The change in supercrystal morphology is explained by Flory-type solvation theory using Hansen solubility colloidal parameters. The use of the same batch of Co nanocrystals for the fabrication of supercrystalline films and colloidal crystals enables accurate comparative structural and magnetic studies using (high-resolution) transmission electron microscopy, field emission gun scanning electron microscopy, grazing incidence small-angle X-ray scattering and vibrating sample magnetometry. The nearest neighbor distance between nanoparticles is interpreted using theoretical models proposed in the literature. We evidence the increase in both geometric anisotropy and magnetic dipolar interactions for colloidal crystals compared to supercrystalline films.

3.
J Phys Condens Matter ; 32(13): 135804, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-31822639

ABSTRACT

We study from tempered Monte Carlo simulations the magnetic phase diagram of a textured dipolar Ising model on a face centered cubic lattice. The Ising coupling of the model follow the dipole-dipole interaction. The Ising axes are distributed with a uniaxial symmetry along the [Formula: see text] direction with a Gaussian probability density of the polar angles. This distribution provides a quenched disorder realization of the dipolar Ising model making a continuous link between the parallel axes dipoles and the random axes dipole models. As expected the phase diagram presents three distinctive phases: paramagnetic, ferromagnetic and spin-glass. A quasi long range ferromagnetic and a reentrant spin-glass phases are obtained in the vicinity of the ferromagnetic spin-glass line. This model provides a way to predict the magnetic phases of magnetic nanoparticles supracrystals in terms of the texturation of the easy axes distribution in the strong anisotropy limit.

4.
Phys Rev E ; 98(1-1): 012101, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30110727

ABSTRACT

We study more than 10^{4} random aggregates of 10^{6} monodisperse sticky hard spheres each, generated by various static algorithms. Their packing fraction varies from 0.370 up to 0.593. These aggregates are shown to be based on two types of disordered structures: random regular polytetrahedra and random aggregates, the former giving rise to δ peaks on pair distribution functions. Distortion of structural (Delaunay) tetrahedra is studied by two parameters, which show some similarities and some differences in terms of overall tendencies. Isotropy of aggregates is characterized by the nematic order parameter. The overall structure is then studied by distinguishing spheres in function of their contact coordination number (CCN). Distributions of average CCN around spheres of a given CCN value show trends that depend on packing fraction and building algorithms. The radial dependence of the average CCN turns out to be dependent upon the CCN of the central sphere and shows discontinuities that resemble those of the pair distribution function. Moreover, it is shown that structural details appear when the CCN is used as pseudochemical parameter, such as various angular distribution of bond angles, partial pair distribution functions, Ashcroft-Langreth and Bhatia-Thornton partial structure factors. These allow distinguishing aggregates with the same values of packing fraction or average tetrahedral distortion or even similar global pair distribution function, indicative of the great interest of paying attention to contact coordination numbers to study more precisely the structure of random aggregates.

5.
J Chem Phys ; 123(20): 204711, 2005 Nov 22.
Article in English | MEDLINE | ID: mdl-16351297

ABSTRACT

We present a study of the structure in the interface between two immiscible liquids by density-functional theory and molecular-dynamics calculations. The liquids are modeled by Lennard-Jones potentials, which achieve immiscibility by suppressing the attractive interaction between unlike particles. The density profiles of the liquids display oscillations only in a limited part of the simple liquid-phase diagram (rho,T). When approaching the liquid-vapor coexistence, a significant depletion appears while the layering behavior of the density profile vanishes. By analogy with the liquid-vapor interface and the analysis of the adsorption this behavior is suggested to be strongly related to the drying transition.


Subject(s)
Chemistry, Physical/methods , Adsorption , Computer Simulation , Gases , Models, Chemical , Models, Statistical , Models, Theoretical , Oscillometry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...