Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
2.
J Intern Med ; 295(6): 785-803, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698538

ABSTRACT

In the last decades, the development of high-throughput molecular assays has revolutionised cancer diagnostics, paving the way for the concept of personalised cancer medicine. This progress has been driven by the introduction of such technologies through biomarker-driven oncology trials. In this review, strengths and limitations of various state-of-the-art sequencing technologies, including gene panel sequencing (DNA and RNA), whole-exome/whole-genome sequencing and whole-transcriptome sequencing, are explored, focusing on their ability to identify clinically relevant biomarkers with diagnostic, prognostic and/or predictive impact. This includes the need to assess complex biomarkers, for example microsatellite instability, tumour mutation burden and homologous recombination deficiency, to identify patients suitable for specific therapies, including immunotherapy. Furthermore, the crucial role of biomarker analysis and multidisciplinary molecular tumour boards in selecting patients for trial inclusion is discussed in relation to various trial concepts, including drug repurposing. Recognising that today's exploratory techniques will evolve into tomorrow's routine diagnostics and clinical study inclusion assays, the importance of emerging technologies for multimodal diagnostics, such as proteomics and in vivo drug sensitivity testing, is also discussed. In addition, key regulatory aspects and the importance of patient engagement in all phases of a clinical trial are described. Finally, we propose a set of recommendations for consideration when planning a new precision cancer medicine trial.


Subject(s)
Biomarkers, Tumor , Neoplasms , Precision Medicine , Humans , Precision Medicine/methods , Neoplasms/genetics , Neoplasms/therapy , Neoplasms/diagnosis , Neoplasms/drug therapy , High-Throughput Nucleotide Sequencing , Clinical Trials as Topic , Medical Oncology/methods , Medical Oncology/trends
3.
Acta Oncol ; 63: 385-391, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38779910

ABSTRACT

BACKGROUND: In the two European Union (EU)-funded projects, PCM4EU (Personalized Cancer Medicine for all EU citizens) and PRIME-ROSE (Precision Cancer Medicine Repurposing System Using Pragmatic Clinical Trials), we aim to facilitate implementation of precision cancer medicine (PCM) in Europe by leveraging the experience from ongoing national initiatives that have already been particularly successful. PATIENTS AND METHODS: PCM4EU and PRIME-ROSE gather 17 and 24 partners, respectively, from 19 European countries. The projects are based on a network of Drug Rediscovery Protocol (DRUP)-like clinical trials that are currently ongoing or soon to start in 11 different countries, and with more trials expected to be established soon. The main aims of both the projects are to improve implementation pathways from molecular diagnostics to treatment, and reimbursement of diagnostics and tumour-tailored therapies to provide examples of best practices for PCM in Europe. RESULTS: PCM4EU and PRIME-ROSE were launched in January and July 2023, respectively. Educational materials, including a podcast series, are already available from the PCM4EU website (http://www.pcm4eu.eu). The first reports, including an overview of requirements for the reimbursement systems in participating countries and a guide on patient involvement, are expected to be published in 2024. CONCLUSION: PCM4EU and PRIME-ROSE were launched in January and July 2023, respectively. Educational materials, including a podcast series, are already available from the PCM4EU website (http://www.pcm4eu.eu). The first reports, including an overview of requirements for the reimbursement systems in participating countries and a guide on patient involvement, are expected to be published in 2024. CONCLUSION: European collaboration can facilitate the implementation of PCM and thereby provide affordable and equitable access to precision diagnostics and matched therapies for more patients.


Subject(s)
Neoplasms , Precision Medicine , Humans , Precision Medicine/methods , Europe , Neoplasms/therapy , European Union , Drug Repositioning , Clinical Trials as Topic/organization & administration
5.
J Immunother Cancer ; 12(1)2024 01 19.
Article in English | MEDLINE | ID: mdl-38242720

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors have shown minimal clinical activity in hormone receptor-positive metastatic breast cancer (HR+mBC). Doxorubicin and low-dose cyclophosphamide are reported to induce immune responses and counter regulatory T cells (Tregs). Here, we report the efficacy and safety of combined programmed cell death protein-1/cytotoxic T-lymphocyte-associated protein 4 blockade concomitant with or after immunomodulatory chemotherapy for HR+mBC. METHODS: Patients with HR+mBC starting first-/second- line chemotherapy (chemo) were randomized 2:3 to chemotherapy (pegylated liposomal doxorubicin 20 mg/m2 every second week plus cyclophosphamide 50 mg by mouth/day in every other 2-week cycle) with or without concomitant ipilimumab (ipi; 1 mg/kg every sixth week) and nivolumab (nivo; 240 mg every second week). Patients in the chemo-only arm were offered cross-over to ipi/nivo without chemotherapy. Co-primary endpoints were safety in all patients starting therapy and progression-free survival (PFS) in the per-protocol (PP) population, defined as all patients evaluated for response and receiving at least two treatment cycles. Secondary endpoints included objective response rate, clinical benefit rate, Treg changes during therapy and assessment of programmed death-ligand 1 (PD-L1), mutational burden and immune gene signatures as biomarkers. RESULTS: Eighty-two patients were randomized and received immune-chemo (N=49) or chemo-only (N=33), 16 patients continued to the ipi/nivo-only cross-over arm. Median follow-up was 41.4 months. Serious adverse events occurred in 63% in the immune-chemo arm, 39% in the chemo-only arm and 31% in the cross-over-arm. In the PP population (N=78) median PFS in the immune-chemo arm was 5.1 months, compared with 3.6 months in the chemo-only arm, with HR 0.94 (95% CI 0.59 to 1.51). Clinical benefit rates were 55% (26/47) and 48% (15/31) in the immune-chemo and chemo-only arms, respectively. In the cross-over-arm (ipi/nivo-only), objective responses were observed in 19% of patients (3/16) and clinical benefit in 25% (4/16). Treg levels in blood decreased after study chemotherapy. High-grade immune-related adverse events were associated with prolonged PFS. PD-L1 status and mutational burden were not associated with ipi/nivo benefit, whereas a numerical PFS advantage was observed for patients with a high Treg gene signature in tumor. CONCLUSION: The addition of ipi/nivo to chemotherapy increased toxicity without improving efficacy. Ipi/nivo administered sequentially to chemotherapy was tolerable and induced clinical responses. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Identifier: NCT03409198.


Subject(s)
Breast Neoplasms , Nivolumab , Female , Humans , Anthracyclines , Antineoplastic Combined Chemotherapy Protocols/adverse effects , B7-H1 Antigen , Breast Neoplasms/drug therapy , Breast Neoplasms/chemically induced , Cyclophosphamide , Ipilimumab/pharmacology , Ipilimumab/therapeutic use , Nivolumab/pharmacology , Nivolumab/therapeutic use
6.
Curr Oncol ; 30(11): 10007-10018, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37999147

ABSTRACT

T-prolymphocytic leukemia (T-PLL) is a rare malignancy of mature T-cells with distinct clinical, cytomorphological, and molecular genetic features. The disease typically presents at an advanced stage, with marked leukocytosis, B symptoms, hepatosplenomegaly, and bone marrow failure. It usually follows an aggressive course from presentation, and the prognosis is often considered dismal; the median overall survival is less than one year with conventional chemotherapy. This case report describes a patient with T-PLL who, after an unusually protracted inactive phase, ultimately progressed to a highly invasive, organ-involving disease. After initial treatments failed, a novel treatment approach resulted in a significant response.


Subject(s)
Leukemia, Prolymphocytic, T-Cell , Leukemia, Prolymphocytic , Humans , Alemtuzumab/therapeutic use , Leukemia, Prolymphocytic/diagnosis , Leukemia, Prolymphocytic/genetics , Leukemia, Prolymphocytic/therapy , Leukemia, Prolymphocytic, T-Cell/diagnosis , Leukemia, Prolymphocytic, T-Cell/genetics , Leukemia, Prolymphocytic, T-Cell/therapy
7.
Nat Commun ; 14(1): 3561, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37322009

ABSTRACT

Intratumor heterogeneity associates with poor patient outcome. Stromal stiffening also accompanies cancer. Whether cancers demonstrate stiffness heterogeneity, and if this is linked to tumor cell heterogeneity remains unclear. We developed a method to measure the stiffness heterogeneity in human breast tumors that quantifies the stromal stiffness each cell experiences and permits visual registration with biomarkers of tumor progression. We present Spatially Transformed Inferential Force Map (STIFMap) which exploits computer vision to precisely automate atomic force microscopy (AFM) indentation combined with a trained convolutional neural network to predict stromal elasticity with micron-resolution using collagen morphological features and ground truth AFM data. We registered high-elasticity regions within human breast tumors colocalizing with markers of mechanical activation and an epithelial-to-mesenchymal transition (EMT). The findings highlight the utility of STIFMap to assess mechanical heterogeneity of human tumors across length scales from single cells to whole tissues and implicates stromal stiffness in tumor cell heterogeneity.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Mechanical Phenomena , Elasticity , Collagen , Neural Networks, Computer , Microscopy, Atomic Force/methods
8.
Trends Pharmacol Sci ; 43(11): 973-985, 2022 11.
Article in English | MEDLINE | ID: mdl-36163057

ABSTRACT

Functional precision medicine is a new, emerging area that can guide cancer treatment by capturing information from direct perturbations of tumor-derived, living cells, such as by drug sensitivity screening. Precision cancer medicine as currently implemented in clinical practice has been driven by genomics, and current molecular tumor boards rely extensively on genomic characterization to advise on therapeutic interventions. However, genomic biomarkers can only guide treatment decisions for a fraction of the patients. In this review we provide an overview of the current state of functional precision medicine, highlight advances for drug-sensitivity screening enabled by cell culture models, and discuss how artificial intelligence (AI) can be coupled to functional precision medicine to guide patient stratification.


Subject(s)
Neoplasms , Precision Medicine , Artificial Intelligence , Biomarkers, Tumor , Cell Culture Techniques , Early Detection of Cancer , Humans , Neoplasms/drug therapy
9.
Acta Oncol ; 61(8): 955-962, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35943168

ABSTRACT

BACKGROUND: Precision cancer medicine (PCM), frequently used for the expensive and often modestly efficacious off-label treatment with medications matched to the tumour genome of end-stage cancer, challenges healthcare resources. We compared the health effects, costs and cost-effectiveness of our MetAction PCM study with corresponding data from comparator populations given best supportive care (BSC) in two external randomised controlled trials. METHODS: We designed three partitioned survival models to evaluate the healthcare costs and quality-adjusted life years (QALYs) as the main outcomes. Cost-effectiveness was calculated as the incremental cost-effectiveness ratio (ICER) of PCM relative to BSC with an annual willingness-to-pay (WTP) threshold of EUR 56,384 (NOK 605,000). One-way and probabilistic sensitivity analyses addressed uncertainty. RESULTS: We estimated total healthcare costs (relating to next-generation sequencing (NGS) equipment and personnel wages, molecularly matched medications to the patients with an actionable tumour target and follow-up of the responding patients) and the health outcomes for the MetAction patients versus costs (relating to estimated hospital admission) and outcomes for the BSC cases. The ICERs for incremental QALYs were twice or more as high as the WTP threshold and relatively insensitive to cost decrease of the NGS procedures, while reduction of medication prices would contribute significantly towards a cost-effective PCM strategy. CONCLUSIONS: The models suggested that the high ICERs of PCM were driven by costs of the NGS diagnostics and molecularly matched medications, with a likelihood for the strategy to be cost-effective defying WTP constraints. Reducing drug expenses to half the list price would likely result in an ICER at the WTP threshold. This can be an incentive for a public-private partnership for sharing drug costs in PCM, exemplified by ongoing European initiatives. CLINICALTRIALS.GOV, IDENTIFIER: NCT02142036.


Subject(s)
Neoplasms , Precision Medicine , Cost-Benefit Analysis , Health Care Costs , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Off-Label Use , Quality-Adjusted Life Years , Randomized Controlled Trials as Topic
11.
J Transl Med ; 20(1): 225, 2022 05 14.
Article in English | MEDLINE | ID: mdl-35568909

ABSTRACT

BACKGROUND: Matching treatment based on tumour molecular characteristics has revolutionized the treatment of some cancers and has given hope to many patients. Although personalized cancer care is an old concept, renewed attention has arisen due to recent advancements in cancer diagnostics including access to high-throughput sequencing of tumour tissue. Targeted therapies interfering with cancer specific pathways have been developed and approved for subgroups of patients. These drugs might just as well be efficient in other diagnostic subgroups, not investigated in pharma-led clinical studies, but their potential use on new indications is never explored due to limited number of patients. METHODS: In this national, investigator-initiated, prospective, open-label, non-randomized combined basket- and umbrella-trial, patients are enrolled in multiple parallel cohorts. Each cohort is defined by the patient's tumour type, molecular profile of the tumour, and study drug. Treatment outcome in each cohort is monitored by using a Simon two-stage-like 'admissible' monitoring plan to identify evidence of clinical activity. All drugs available in IMPRESS-Norway have regulatory approval and are funded by pharmaceutical companies. Molecular diagnostics are funded by the public health care system. DISCUSSION: Precision oncology means to stratify treatment based on specific patient characteristics and the molecular profile of the tumor. Use of targeted drugs is currently restricted to specific biomarker-defined subgroups of patients according to their market authorization. However, other cancer patients might also benefit of treatment with these drugs if the same biomarker is present. The emerging technologies in molecular diagnostics are now being implemented in Norway and it is publicly reimbursed, thus more cancer patients will have a more comprehensive genomic profiling of their tumour. Patients with actionable genomic alterations in their tumour may have the possibility to try precision cancer drugs through IMPRESS-Norway, if standard treatment is no longer an option, and the drugs are available in the study. This might benefit some patients. In addition, it is a good example of a public-private collaboration to establish a national infrastructure for precision oncology. Trial registrations EudraCT: 2020-004414-35, registered 02/19/2021; ClinicalTrial.gov: NCT04817956, registered 03/26/2021.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/therapeutic use , Humans , Medical Oncology , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine , Prospective Studies
12.
JCO Precis Oncol ; 6: e2200015, 2022 04.
Article in English | MEDLINE | ID: mdl-35476549

ABSTRACT

PURPOSE: In GI cancers, anaplastic lymphoma kinase (ALK) rearrangements are extremely less frequent than in non-small-cell lung cancer but may be important to offer personalized strategies of treatment in selected patients. Data about the activity and efficacy of ALK inhibitors (ALKi) in GI cancers are scarce. MATERIALS AND METHODS: We assembled a clinical and molecular international data set of pretreated patients with metastatic or nonresectable cancers of GI primary tumor origin with documented ALK rearrangement treated with at least one line of ALKi. Measurable disease as per RECIST 1.1 was required for response analysis. RESULTS: Primary tumor sites were distributed as follows: 5 (38%) pancreas, 3 (23%) right colon, and 1 (8%) for each one of gastric, duodenal, rectal, left colon, and biliary tract sites. Seven patients (54%) were treated with alectinib, 5 (38%) with crizotinib, and 1 (8%) with entrectinib. After disease progression, five patients (38%) received a subsequent ALKi treatment line, and at the time of data cutoff date, treatment was still ongoing in two patients. Five of 12 evaluable patients (41%) achieved a partial response to first-line ALKi, five patients (41%) had stable disease, and 2 (17%) had progressive disease. No complete responses were registered. At a median follow-up of 39.6 months (interquartile range: 19.8-59.5), the median progression-free survival was 5.0 months (95% CI, 3.68 to no response) and the median overall survival was 9.3 months (95% CI, 5.46 to no response). CONCLUSION: Treatment with ALKi provides remarkable responses and clinical benefit in pretreated patients with ALK fusion-positive GI malignancies. Despite the rarity, ALK rearrangements represent an important therapeutic target in individual pretreated patients with GI solid tumors. Further work providing prospective clinical validation of this target is needed.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Gastrointestinal Neoplasms , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Crizotinib/therapeutic use , Gastrointestinal Neoplasms/drug therapy , Humans , Lung Neoplasms/drug therapy , Prospective Studies , Protein Kinase Inhibitors/therapeutic use
13.
Breast Cancer Res ; 24(1): 4, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35012613

ABSTRACT

BACKGROUND: Breast cancer incidence differs between non-immigrants and immigrants from low- and middle-income countries. This study investigates whether immigrants also have different subtype-specific incidences. METHODS: We used national health registries in Norway and calculated subtype-specific incidence rate ratios (IRRs) for invasive breast cancer among women aged 20-75 and 20-49 years between 2005 and 2015. Immigrant groups were classified by country of birth broadly defined based on WHO regional groupings. Subtype was defined using estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor 2 (HER2) status as luminal A-like (ER+ PR+ HER2-), luminal B-like/HER2- (ER+ PR- HER2-), luminal B-like/HER2+ (ER+ PR any HER2+), HER2+ (ER-PR-HER2+) and triple-negative breast cancer (TNBC) (ER-PR-HER2-). RESULTS: Compared to non-immigrants, incidence of the luminal A-like subtype was lower in immigrants from Sub-Saharan Africa (IRR 0.43 95% CI 0.28-0.66), South East Asia (IRR 0.63 95% CI 0.51-0.79), South Asia (IRR 0.67 95% CI 0.52-0.86) and Eastern Europe (IRR 0.86 95% CI 0.76-0.99). Immigrants from South Asia had higher rates of HER2 + tumors (IRR 2.02 95% CI 1.26-3.23). The rates of TNBC tended to be similar regardless of region of birth, except that women from South East Asia had an IRR of 0.54 (95% CI 0.32-0.91). CONCLUSIONS: Women from Eastern Europe, Sub-Saharan Africa and Asia had different subtype-specific incidences compared to women from high-income countries (including non-immigrants). These differences in tumor characteristics between immigrant groups should be taken into consideration when planning preventive or screening strategies.


Subject(s)
Breast Neoplasms , Emigrants and Immigrants , Triple Negative Breast Neoplasms , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Female , Humans , Incidence , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Triple Negative Breast Neoplasms/pathology
14.
Mol Oncol ; 16(1): 88-103, 2022 01.
Article in English | MEDLINE | ID: mdl-34165864

ABSTRACT

Sentinel lymph nodes are the first nodes draining the lymph from a breast and could reveal early changes in the host immune system upon dissemination of breast cancer cells. To investigate this, we performed single-cell immune profiling of lymph nodes with and without metastatic cells. Whereas no significant changes were observed for B-cell and natural killer (NK)-cell subsets, metastatic lymph nodes had a significantly increased frequency of CD8 T cells and a skewing toward an effector/memory phenotype of CD4 and CD8 T cells, suggesting an ongoing immune response. Additionally, metastatic lymph nodes had an increased frequency of TIGIT (T-cell immunoreceptor with Ig and ITIM domains)-positive T cells with suppressed TCR signaling compared with non-metastatic nodes, indicating exhaustion of effector T cells, and an increased frequency of regulatory T cells (Tregs) with an activated phenotype. T-cell alterations correlated with the percentage of metastatic tumor cells, reflecting the presence of metastatic tumor cells driving T effector cells toward exhaustion and promoting immunosuppression by recruitment or increased differentiation toward Tregs. These results show that immune suppression occurs already in early stages of tumor progression.


Subject(s)
Breast Neoplasms , Breast Neoplasms/pathology , CD8-Positive T-Lymphocytes , Female , Humans , Immunosuppression Therapy , Lymph Nodes/pathology , Melanoma , Skin Neoplasms , T-Lymphocyte Subsets/pathology , Melanoma, Cutaneous Malignant
15.
Int J Cancer ; 150(1): 100-111, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34449877

ABSTRACT

Ipilimumab was the first treatment that improved survival in advanced melanoma. Efficacy and toxicity in a real-world setting may differ from clinical trials, due to more liberal eligibility criteria and less intensive monitoring. Moreover, high costs and lack of biomarkers have raised cost-benefit concerns about ipilimumab in national healthcare systems and limited its use. Here, we report the prospective, interventional study, Ipi4 (NCT02068196), which aimed to investigate the toxicity and efficacy of ipilimumab in a real-world population with advanced melanoma. This national, multicentre, phase IV trial included 151 patients. Patients received ipilimumab 3 mg/kg intravenously and were followed for at least 5 years or until death. Treatment interruption or cessation occurred in 38%, most frequently due to disease progression (19%). Treatment-associated grade 3 to 4 toxicity was observed in 28% of patients, and immune-related toxicity in 56%. The overall response rate was 9%. Median overall survival was 12.1 months (95% CI: 8.3-15.9); and progression-free survival 2.7 months (95% CI: 2.6-2.8). After 5 years, 20% of patients were alive. In a landmark analysis from 6 months, improved survival was associated with objective response (HR 0.16, P = .001) and stable disease (HR 0.49, P = .005) compared to progressive disease. Poor performance status, elevated lactate dehydrogenase and C-reactive protein were identified as biomarkers. This prospective trial represents the longest reported follow-up of a real-world melanoma population treated with ipilimumab. Results indicate safety and efficacy comparable to phase III trials and suggest that the use of ipilimumab can be based on current cost-benefit estimates.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Ipilimumab/therapeutic use , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Female , Follow-Up Studies , Humans , Male , Melanoma/pathology , Middle Aged , Prognosis , Prospective Studies , Skin Neoplasms/secondary , Survival Rate
16.
BMC Cancer ; 21(1): 1089, 2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34625038

ABSTRACT

BACKGROUND: Genetic alterations are common in non-small cell lung cancer (NSCLC), and DNA mutations and translocations are targets for therapy. Copy number aberrations occur frequently in NSCLC tumors and may influence gene expression and further alter signaling pathways. In this study we aimed to characterize the genomic architecture of NSCLC tumors and to identify genomic differences between tumors stratified by histology and mutation status. Furthermore, we sought to integrate DNA copy number data with mRNA expression to find genes with expression putatively regulated by copy number aberrations and the oncogenic pathways associated with these affected genes. METHODS: Copy number data were obtained from 190 resected early-stage NSCLC tumors and gene expression data were available from 113 of the adenocarcinomas. Clinical and histopathological data were known, and EGFR-, KRAS- and TP53 mutation status was determined. Allele-specific copy number profiles were calculated using ASCAT, and regional copy number aberration were subsequently obtained and analyzed jointly with the gene expression data. RESULTS: The NSCLC tumors tissue displayed overall complex DNA copy number profiles with numerous recurrent aberrations. Despite histological differences, tissue samples from squamous cell carcinomas and adenocarcinomas had remarkably similar copy number patterns. The TP53-mutated lung adenocarcinomas displayed a highly aberrant genome, with significantly altered copy number profiles including gains, losses and focal complex events. The EGFR-mutant lung adenocarcinomas had specific arm-wise aberrations particularly at chromosome7p and 9q. A large number of genes displayed correlation between copy number and expression level, and the PI(3)K-mTOR pathway was highly enriched for such genes. CONCLUSIONS: The genomic architecture in NSCLC tumors is complex, and particularly TP53-mutated lung adenocarcinomas displayed highly aberrant copy number profiles. We suggest to always include TP53-mutation status when studying copy number aberrations in NSCLC tumors. Copy number may further impact gene expression and alter cellular signaling pathways.


Subject(s)
Adenocarcinoma of Lung/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Gene Dosage , Genes, p53 , Lung Neoplasms/genetics , Adenocarcinoma of Lung/pathology , Alleles , Carcinoma, Non-Small-Cell Lung/pathology , Chromosomes, Human, Pair 7 , Chromosomes, Human, Pair 9 , Class I Phosphatidylinositol 3-Kinases/genetics , DNA Copy Number Variations , Ex-Smokers , Female , Gene Expression , Genes, erbB-1/genetics , Genes, ras/genetics , Humans , Lung Neoplasms/pathology , Male , Non-Smokers , Polymorphism, Single Nucleotide , Signal Transduction/genetics , Smokers , TOR Serine-Threonine Kinases/genetics
17.
JCI Insight ; 6(11)2021 06 08.
Article in English | MEDLINE | ID: mdl-33886505

ABSTRACT

Despite the availability of multiple human epidermal growth factor receptor 2-targeted (HER2-targeted) treatments, therapeutic resistance in HER2+ breast cancer remains a clinical challenge. Intratumor heterogeneity for HER2 and resistance-conferring mutations in the PIK3CA gene (encoding PI3K catalytic subunit α) have been investigated in response and resistance to HER2-targeting agents, while the role of divergent cellular phenotypes and tumor epithelial-stromal cell interactions is less well understood. Here, we assessed the effect of intratumor cellular genetic heterogeneity for ERBB2 (encoding HER2) copy number and PIK3CA mutation on different types of neoadjuvant HER2-targeting therapies and clinical outcome in HER2+ breast cancer. We found that the frequency of cells lacking HER2 was a better predictor of response to HER2-targeted treatment than intratumor heterogeneity. We also compared the efficacy of different therapies in the same tumor using patient-derived xenograft models of heterogeneous HER2+ breast cancer and single-cell approaches. Stromal determinants were better predictors of response than tumor epithelial cells, and we identified alveolar epithelial and fibroblastic reticular cells as well as lymphatic vessel endothelial hyaluronan receptor 1-positive (Lyve1+) macrophages as putative drivers of therapeutic resistance. Our results demonstrate that both preexisting and acquired resistance to HER2-targeting agents involve multiple mechanisms including the tumor microenvironment. Furthermore, our data suggest that intratumor heterogeneity for HER2 should be incorporated into treatment design.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Breast Neoplasms/drug therapy , Class I Phosphatidylinositol 3-Kinases/genetics , Drug Resistance, Neoplasm/genetics , Epithelial Cells/metabolism , Macrophages/metabolism , Receptor, ErbB-2/genetics , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/therapeutic use , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Class I Phosphatidylinositol 3-Kinases/metabolism , DNA Copy Number Variations , Female , Fibroblasts/metabolism , Humans , Middle Aged , Mutation , Neoplasm Transplantation , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/metabolism , Trastuzumab/therapeutic use , Tumor Microenvironment , Vesicular Transport Proteins/metabolism
18.
Nat Cancer ; 2(3): 327-339, 2021 03.
Article in English | MEDLINE | ID: mdl-34993493

ABSTRACT

In the bone marrow (BM) microenvironment, where breast cancer (BC) disseminated tumour cells (DTCs) can remain dormant for decades, NG2+/Nestin+ mesenchymal stem cells (MSCs) promote hematopoietic stem cell quiescence. Here, we reveal that periarteriolar BM-resident NG2+/Nestin+ MSCs can also instruct BC DTCs to enter dormancy. NG2+/Nestin+ MSCs produce TGFß2 and BMP7 and activate a quiescence pathway dependent on TGFBRIII and BMPRII, which via p38-kinase result in p27 induction. Genetic depletion of MSCs or conditional knock-out of TGFß2 in MSCs using an NG2-CreER driver led to bone metastatic outgrowth of otherwise dormant p27+/Ki67- DTCs. Also ER+ BC patients without systemic recurrence displayed higher frequency of TGFß2 and BMP7 detection in the BM. Our results provide a direct proof that HSC dormancy niches control BC DTC dormancy and suggest that aging or extrinsic factors that affect the NG2+/Nestin+ MSC niche homeostasis may result in a break from dormancy and BC bone relapse.


Subject(s)
Breast Neoplasms , Mesenchymal Stem Cells , Bone Marrow/metabolism , Breast Neoplasms/genetics , Female , Humans , Mesenchymal Stem Cells/metabolism , Neoplasm Recurrence, Local/metabolism , Nestin/metabolism , Tumor Microenvironment
20.
Commun Biol ; 3(1): 153, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32242091

ABSTRACT

Somatic copy number alterations are a frequent sign of genome instability in cancer. A precise characterization of the genome architecture would reveal underlying instability mechanisms and provide an instrument for outcome prediction and treatment guidance. Here we show that the local spatial behavior of copy number profiles conveys important information about this architecture. Six filters were defined to characterize regional traits in copy number profiles, and the resulting Copy Aberration Regional Mapping Analysis (CARMA) algorithm was applied to tumors in four breast cancer cohorts (n = 2919). The derived motifs represent a layer of information that complements established molecular classifications of breast cancer. A score reflecting presence or absence of motifs provided a highly significant independent prognostic predictor. Results were consistent between cohorts. The nonsite-specific occurrence of the detected patterns suggests that CARMA captures underlying replication and repair defects and could have a future potential in treatment stratification.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , DNA Copy Number Variations , Gene Dosage , Genomic Instability , Algorithms , Breast Neoplasms/mortality , Breast Neoplasms/therapy , Clinical Decision-Making , Databases, Genetic , Female , Gene Expression Profiling , Humans , Middle Aged , Predictive Value of Tests , Prognosis , Risk Assessment , Risk Factors , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...