Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS Biol ; 21(12): e3002249, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38127878

ABSTRACT

Despite use of tecovirimat since the beginning of the 2022 outbreak, few data have been published on its antiviral effect in humans. We here predict tecovirimat efficacy using a unique set of data in nonhuman primates (NHPs) and humans. We analyzed tecovirimat antiviral activity on viral kinetics in NHP to characterize its concentration-effect relationship in vivo. Next, we used a pharmacological model developed in healthy volunteers to project its antiviral efficacy in humans. Finally, a viral dynamic model was applied to characterize mpox kinetics in skin lesions from 54 untreated patients, and we used this modeling framework to predict the impact of tecovirimat on viral clearance in skin lesions. At human-recommended doses, tecovirimat could inhibit viral replication from infected cells by more than 90% after 3 to 5 days of drug administration and achieved over 97% efficacy at drug steady state. With an estimated mpox within-host basic reproduction number, R0, equal to 5.6, tecovirimat could therefore shorten the time to viral clearance if given before viral peak. We predicted that initiating treatment at symptom onset, which on average occurred 2 days before viral peak, could reduce the time to viral clearance by about 6 days. Immediate postexposure prophylaxis could not only reduce time to clearance but also lower peak viral load by more than 1.0 log10 copies/mL and shorten the duration of positive viral culture by about 7 to 10 days. These findings support the early administration of tecovirimat against mpox infection, ideally starting from the infection day as a postexposure prophylaxis.


Subject(s)
Antiviral Agents , Mpox (monkeypox) , Animals , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Benzamides , Isoindoles/adverse effects
2.
Expert Rev Clin Pharmacol ; 16(9): 843-854, 2023.
Article in English | MEDLINE | ID: mdl-37592723

ABSTRACT

INTRODUCTION: Since May 2022, there have been nearly 87,000 documented cases of mpox worldwide, with 119 deaths. Pharmacological interventions for mpox include the MVA-BN smallpox vaccine, tecovirimat, cidofovir, its pro-drug brincidofovir, and vaccinia immune globulin intravenous (VIGIV). AREAS COVERED: The literature search and information gathering for this review included the PubMed database focusing on mpox and monkeypox, in combination with tecovirimat, brincidofovir, cidofovir, VIGIV, and smallpox vaccine. WHO.int, CDC.gov, FDA.gov, and ClinicalTrials.gov websites were accessed for the most recent information on the mpox outbreak. Mechanisms for deployment and access to treatment including expanded access, emergency use, and clinical trials will be discussed. Treatment outcomes with safety data will be presented. EXPERT OPINION: The vaccine as a preventive measure, along with numerous treatment options, largely controlled the outbreak, although deployment of each could be improved upon to hasten and broaden access. More widespread coverage by the vaccine is necessary to prevent future resurgence of mpox. Tecovirimat has emerged as a safe frontline treatment for mpox, while brincidofovir use has been limited by safety concerns. VIGIV and cidofovir should be reserved for the most severe cases in which other options are not fully effective.


Subject(s)
Mpox (monkeypox) , Vaccines , Humans , Cidofovir , Benzamides
3.
Expert Rev Anti Infect Ther ; 21(3): 235-242, 2023 03.
Article in English | MEDLINE | ID: mdl-36728515

ABSTRACT

INTRODUCTION: Tecovirimat oral capsule formulation is approved in the US and Canada for treatment of smallpox and in the United Kingdom (UK) and European Union (EU) for treatment of multiple human orthopoxvirus diseases, including mpox. Smallpox is considered a serious threat, and there is currently an unprecedented global mpox outbreak. AREAS COVERED: A brief summary of the threat of smallpox, the threat of increasing mpox spread in endemic regions, and the unprecedented emergence of mpox into non-endemic regions is presented. The tecovirimat intravenous formulation clinical development program leading to USFDA approval for smallpox treatment is discussed. EXPERT OPINION: As of January 2023 tecovirimat is approved to treat mpox in the UK and EU. However, published clinical trial data evaluating tecovirimat efficacy and safety in mpox patients is pending. Increasing global prevalence of mpox highlights the potential benefits of a well-characterized, effective, and safe antiviral treatment for mpox infection. Ongoing trials in mpox patients may provide results supporting the use of tecovirimat to treat this disease. USFDA approval of tecovirimat for post-exposure prophylaxis in the event of a smallpox release, and the development of pediatric liquid formulations for patients under 13 kg, could provide additional public health benefits.


Subject(s)
Mpox (monkeypox) , Smallpox , Child , Humans , Smallpox/drug therapy , Smallpox/prevention & control , Benzamides/pharmacology , Isoindoles , Disease Outbreaks/prevention & control
4.
Expert Rev Anti Infect Ther ; 19(3): 331-344, 2021 03.
Article in English | MEDLINE | ID: mdl-32882158

ABSTRACT

INTRODUCTION: Tecovirimat (TPOXX®; ST-246) was approved for the treatment of symptomatic smallpox by the USFDA in July of 2018 and has been stockpiled by the US government for use in a smallpox outbreak. While there has not been a reported case of smallpox since 1978 it is still considered a serious bioterrorism threat. AREAS COVERED: A brief history of smallpox from its proposed origins as a human disease through its eradication in the late 20th century is presented. The current smallpox threat and the current public health response plans are described. The discovery, and development of tecovirimat through NDA submission and subsequent approval for treatment of smallpox are discussed. Google Scholar and PubMed were searched over all available dates for relevant publications. EXPERT OPINION: Approval of tecovirimat to treat smallpox represents an important milestone in biosecurity preparedness. Incorporating tecovirimat into the CDC smallpox response plan, development of pediatric liquid and intravenous formulations, and approval for post-exposure prophylaxis would provide additional health security benefit.Tecovirimat shows broad efficacy against orthopoxviruses in vitro and in vivo and could be developed for use against emerging orthopoxvirus diseases such as monkeypox, vaccination-associated adverse events, and side effects of vaccinia oncolytic virus therapy.


Subject(s)
Antiviral Agents/administration & dosage , Benzamides/administration & dosage , Isoindoles/administration & dosage , Smallpox/drug therapy , Antiviral Agents/pharmacology , Benzamides/pharmacology , Bioterrorism/prevention & control , Humans , Isoindoles/pharmacology , Orthopoxvirus/drug effects , Orthopoxvirus/isolation & purification , Poxviridae Infections/drug therapy , Poxviridae Infections/virology
5.
Vaccine ; 38(3): 644-654, 2020 01 16.
Article in English | MEDLINE | ID: mdl-31677948

ABSTRACT

Naturally occurring smallpox has been eradicated but research stocks of variola virus (VARV), the causative agent of smallpox, still exist in secure laboratories. Clandestine stores of the virus or resurrection of VARV via synthetic biology are possible and have led to concerns that VARV could be used as a biological weapon. The US government has prepared for such an event by stockpiling smallpox vaccines and TPOXX®, SIGA Technologies' smallpox antiviral drug. While vaccination is effective as a pre-exposure prophylaxis, protection is limited when administered following exposure. Safety concerns preclude general use of the vaccine unless there is a smallpox outbreak. TPOXX is approved by the FDA for use after confirmed diagnosis of smallpox disease. Tecovirimat, the active pharmaceutical ingredient in TPOXX, targets a highly conserved orthopoxviral protein, inhibiting long-range dissemination of virus. Although indications for use of the vaccine and TPOXX do not overlap, concomitant use is possible, especially if the TPOXX indication is expanded to include post-exposure prophylaxis. It is therefore important to understand how vaccine and TPOXX may interact. In studies presented here, monkeys were vaccinated with the ACAM2000TM live attenuated smallpox vaccine and concomitantly treated with tecovirimat or placebo. Immune responses to the vaccine and protective efficacy versus a lethal monkeypox virus (MPXV) challenge were evaluated. In two studies, primary and anamnestic humoral immune responses were similar regardless of tecovirimat treatment while the third study showed reduction in vaccine elicited humoral immunity. Following lethal MPXV challenge, all (12 of 12) vaccinated/placebo treated animals survived, and 12 of 13 vaccinated/tecovirimat treated animals survived. Clinical signs of disease were elevated in tecovirimat treated animals compared to placebo treated animals. This suggests that TPOXX may affect the immunogenicity of ACAM2000 if administered concomitantly. These studies may inform on how vaccine and TPOXX are used during a smallpox outbreak.


Subject(s)
Benzamides/administration & dosage , Immunogenicity, Vaccine/drug effects , Isoindoles/administration & dosage , Monkeypox virus/drug effects , Mpox (monkeypox)/prevention & control , Smallpox Vaccine/administration & dosage , Animals , Benzamides/immunology , Drug Therapy, Combination , Female , Immunogenicity, Vaccine/immunology , Isoindoles/immunology , Macaca fascicularis , Macaca mulatta , Male , Mpox (monkeypox)/immunology , Monkeypox virus/immunology , Primates , Smallpox Vaccine/immunology , Treatment Outcome
6.
J Infect Dis ; 218(9): 1490-1499, 2018 09 22.
Article in English | MEDLINE | ID: mdl-29982575

ABSTRACT

Background: Tecovirimat (ST-246) is being developed as an antiviral therapeutic for smallpox for use in the event of an accidental or intentional release. The last reported case of smallpox was 1978 but the potential for use of variola virus for biowarfare has renewed interest in smallpox antiviral therapeutics. Methods: Cynomolgus macaques were challenged with a lethal dose of monkeypox virus (MPXV) by aerosol as a model for human smallpox and treated orally with 10 mg/kg tecovirimat once daily starting up to 8 days following challenge. Monkeys were monitored for survival, lesions, and clinical signs of disease. Samples were collected for measurement of viremia by quantitative real-time polymerase chain reaction, and for white blood cell counts. Results: Survival in animals initiating treatment up to 5 days postchallenge was 100%. In animals treated starting 6, 7, or 8 days following challenge, survival was 67%, 100%, and 50%, respectively. Treatment initiation up to 4 days following challenge reduced severity of clinical manifestations of infection. Conclusions: Tecovirimat treatment initiated up to 8 days following a lethal aerosol MPXV challenge improves survival and, when initiated earlier than 5 days after challenge, provides protection from clinical effects of disease, supporting the conclusion that it is a promising smallpox antiviral therapeutic candidate.


Subject(s)
Aerosols/adverse effects , Benzamides/therapeutic use , Isoindoles/therapeutic use , Monkeypox virus/drug effects , Mpox (monkeypox)/drug therapy , Animals , Female , Macaca fascicularis , Male , Time-to-Treatment
7.
J Mol Graph Model ; 29(1): 46-53, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20483643

ABSTRACT

The alphavirus nsP2 protease is essential for correct processing of the alphavirus nonstructural polyprotein (nsP1234) and replication of the viral genome. We have combined molecular dynamics simulations with our structural studies to reveal features of the nsP2 protease catalytic site and S1'-S4 subsites that regulate the specificity of the protease. The catalytic mechanism of the nsP2 protease appears similar to the papain-like cysteine proteases, with the conserved catalytic dyad forming a thiolate-imidazolium ion pair in the nsP2-activated state. Substrate binding likely stabilizes this ion pair. Analysis of bimolecular complexes of Venezuelan equine encephalitis virus (VEEV) nsP2 protease with each of the nsP1234 cleavage sites identified protease residues His(510), Ser(511), His(546) and Lys(706) as critical for cleavage site recognition. Homology modelling and molecular dynamics simulations of diverse alphaviruses and their cognate cleavage site sequences revealed general features of substrate recognition that operate across alphavirus strains as well as strain specific covariance between binding site and cleavage site residues. For instance, compensatory changes occurred in the P3 and S3 subsite residues to maintain energetically favourable complementary binding surfaces. These results help explain how alphavirus nsP2 proteases recognize different cleavage sites within the nonstructural polyprotein and discriminate between closely related cleavage targets.


Subject(s)
Alphavirus/enzymology , Cysteine Endopeptidases/chemistry , Cysteine Endopeptidases/metabolism , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Biocatalysis , Models, Molecular , Molecular Sequence Data , Structure-Activity Relationship , Substrate Specificity
8.
Structure ; 14(9): 1449-58, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16962975

ABSTRACT

Alphavirus replication and propagation is dependent on the protease activity of the viral nsP2 protein, which cleaves the nsP1234 polyprotein replication complex into functional components. Thus, nsP2 is an attractive target for drug discovery efforts to combat highly pathogenic alphaviruses. Unfortunately, antiviral development has been hampered by a lack of structural information for the nsP2 protease. Here, we report the crystal structure of the nsP2 protease (nsP2pro) from Venezuelan equine encephalitis alphavirus determined at 2.45 A resolution. The protease structure consists of two distinct domains. The nsP2pro N-terminal domain contains the catalytic dyad cysteine and histidine residues organized in a protein fold that differs significantly from any known cysteine protease or protein folds. The nsP2pro C-terminal domain displays structural similarity to S-adenosyl-L-methionine-dependent RNA methyltransferases and provides essential elements that contribute to substrate recognition and may also regulate the structure of the substrate binding cleft.


Subject(s)
Cysteine Endopeptidases/chemistry , Encephalitis Virus, Venezuelan Equine/enzymology , Amino Acid Sequence , Catalytic Domain , Crystallography, X-Ray , Cysteine Endopeptidases/metabolism , Hydrolysis , Models, Molecular , Molecular Sequence Data , Protein Conformation , Sequence Homology, Amino Acid
9.
Article in English | MEDLINE | ID: mdl-16754969

ABSTRACT

The C-terminal region of Venezuelan equine encephalitis virus (VEEV) nsP2 is responsible for proteolytic processing of the VEEV polyprotein replication complex. This action regulates the activity of the replication complex and is essential for viral replication, thus making nsP2 a very attractive target for development of VEEV therapeutics. The 338-amino-acid C-terminal region of VEEV nsP2 has been overexpressed in Escherichia coli, purified and crystallized. Crystals diffract to beyond 2.5 A resolution and belong to the orthorhombic space group P2(1)2(1)2(1). Isomorphous heavy-atom derivatives suitable for phase analysis have been obtained and work on building a complete structural model is under way.


Subject(s)
Cysteine Endopeptidases/chemistry , Encephalomyelitis, Venezuelan Equine/enzymology , Crystallization , Cysteine Endopeptidases/isolation & purification , Protein Structure, Tertiary , Viral Proteins/chemistry , X-Ray Diffraction
10.
J Mol Biol ; 330(4): 851-66, 2003 Jul 18.
Article in English | MEDLINE | ID: mdl-12850152

ABSTRACT

Unfolding and refolding kinetics of human FKBP12 C22A were monitored by fluorescence emission over a wide range of urea concentration in the presence and absence of protecting osmolytes glycerol, proline, sarcosine and trimethylamine-N-oxide (TMAO). Unfolding is well described by a mono-exponential process, while refolding required a minimum of two exponentials for an adequate fit throughout the urea concentration range considered. The bi-exponential behavior resulted from complex coupling between protein folding, and prolyl isomerization in the denatured state in which the urea-dependent rate constant for folding was greater than, equal to, and less than the rate constants for prolyl isomerization within the urea concentration range of zero to five molar. Amplitudes and the observed folding and unfolding rate constants were fitted to a reversible three-state model composed of two sequential steps involving the native state and a folding-competent denatured species thermodynamically linked to a folding-incompetent denatured species. Excellent agreement between thermodynamic parameters for FKBP12 C22A folding calculated from the kinetic parameters and those obtained directly from equilibrium denaturation assays provides strong support for the applicability of the mechanism, and provides evidence that FKBP12 C22A folding/unfolding is two-state, with prolyl isomer heterogeneity in the denatured ensemble. Despite the chemical diversity of the protecting osmolytes, they all exhibit the same kinetic behavior of increasing the rate constant of folding and decreasing the rate constant for unfolding. Osmolyte effects on folding/unfolding kinetics are readily explained in terms of principles established in understanding osmolyte effects on protein stability. These principles involve the osmophobic effect, which raises the Gibbs energy of the denatured state due to exposure of peptide backbone, thereby increasing the folding rate. This effect also plays a key role in decreasing the unfolding rate when, as is often the case, the activated complex exposes more backbone than is exposed in the native state.


Subject(s)
Tacrolimus Binding Protein 1A/chemistry , Dose-Response Relationship, Drug , Escherichia coli/metabolism , Humans , Kinetics , Methylamines/pharmacology , Models, Molecular , Oxidants/pharmacology , Peptidylprolyl Isomerase/metabolism , Protein Denaturation , Protein Folding , Recombinant Proteins/metabolism , Thermodynamics , Time Factors , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...