Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Chemosphere ; 300: 134642, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35439482

ABSTRACT

Soil-based passive biofiltration system is an economically feasible technology for nitrogen removal from onsite wastewater. However, the conventional design requires a large system footprint with limited treatment capacity. In this study, a novel continuous flow biofilter (CFB) with adjustable recirculation and continuous flow pattern was developed for onsite wastewater treatment with a small footprint. Efficient total nitrogen removal (80.1-97.5%) was observed at various hydraulic loadings (0.03-0.12 m3 m-2 d-1), nitrogen loadings (1.1-8.6 g N m-2 d-1) and recycle ratios (2-3) when treating septic tank effluent (STE), with low effluent TN (0.7-13.6 mg N L-1). Nitrous oxide was observed in the denitrification effluent indicating incomplete denitrification at elevated dissolved oxygen levels (3.3-5.8 mg L-1). Nitrogen removal rate (2.9-7.0 g N m-2 d-1) and ammonium removal rate (2.4-7.2 g N m-2 d-1) were positively correlated with nitrogen loadings increase (1.1-8.6 g N m-2 d-1) but were not significantly impacted by the hydraulic loading rate change (0.08-0.12 m3 m-2 d-1). The total biomass abundance and nitrifying microorganisms decreased significantly as the nitrification columns depth increased, while homogeneous microbial distribution was observed in the denitrification columns. The abundance of ammonium oxidizing archaea (AOA) increased significantly at increased hydraulic and nitrogen loading rate, while the ammonium oxidizing bacteria (AOB) abundance remained steady. The abundance of functional genes involved in denitrification process (nirS, nirK and nosZ) responded differently when hydraulic and nitrogen loading rate changes. Collectively, this study suggested the CFB could efficiently remove nitrogen from onsite wastewater with fluctuating influent compositions and various hydraulic loadings.


Subject(s)
Ammonium Compounds , Wastewater , Bioreactors , Denitrification , Nitrification , Nitrogen/analysis
2.
New York; U.S. National Center for Earthquake Engineering Research (NCEER); 28 Dec. 1997. 204 p. ilus, tab.(Technical Report, NCEER-97-0016).
Monography in En | Desastres -Disasters- | ID: des-14282
SELECTION OF CITATIONS
SEARCH DETAIL
...