Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 166(5): 499-506, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-18814934

ABSTRACT

To verify the possible involvement of lipids and several other compounds including hydrogen peroxide (H(2)O(2)) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) in the response of Hordeum vulgare to early potassium deprivation, plants were grown in hydroponic conditions for 30d with a modified Hewitt nutrient solution containing 3mM K(+). They were then incubated for increasing periods of time ranging from 2 to 36h in the same medium deprived of K(+). In contrast to leaves, root K(+) concentration showed its greatest decrease after 6h of treatment. The main lipids of the control barley roots were phospholipids (PL), representing more than 50% of the total lipids. PL did not change with treatment, whereas free sterols (FS) decreased following K(+) deprivation, showing a reduction of approximately 17% after 36h. With respect to the individual PL, 30h K(+) deprivation led to a reduction in phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylinositol (PI) levels, whereas phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and phosphatidic acid (PA) levels increased. The maximum PA accumulation and the highest phospholipase D (PLD) activation, estimated by an accumulation of phosphatidylbutanol (PtBut), were observed after 24h of K(+) starvation. At the root level, H(2)O(2) showed the maximum value after 6h of incubation in -K solution. In parallel, G3PDH activity reached its minimum. On the basis of a concomitant stimulation of PLD activity and, consequently, PA accumulation, enhancement of H(2)O(2) production, and inhibition of G3PDH activity, we suggest a possible involvement of these three compounds in an early response to K(+) deprivation.


Subject(s)
Hordeum/enzymology , Phospholipase D/metabolism , Potassium/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Glycerophospholipids/metabolism , Hydrogen Peroxide/metabolism , Phosphatidic Acids , Phospholipids/metabolism , Plant Leaves/enzymology , Plant Roots/enzymology , Seedlings/enzymology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...