Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 13(1): 3181, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35676246

ABSTRACT

The RNF43_p.G659fs mutation occurs frequently in colorectal cancer, but its function remains poorly understood and there are no specific therapies directed against this alteration. In this study, we find that RNF43_p.G659fs promotes cell growth independent of Wnt signaling. We perform a drug repurposing library screen and discover that cells with RNF43_p.G659 mutations are selectively killed by inhibition of PI3K signaling. PI3K/mTOR inhibitors yield promising antitumor activity in RNF43659mut isogenic cell lines and xenograft models, as well as in patient-derived organoids harboring RNF43_p.G659fs mutations. We find that RNF43659mut binds p85 leading to increased PI3K signaling through p85 ubiquitination and degradation. Additionally, RNA-sequencing of RNF43659mut isogenic cells reveals decreased interferon response gene expression, that is reversed by PI3K/mTOR inhibition, suggesting that RNF43659mut may alter tumor immunity. Our findings suggest a therapeutic application for PI3K/mTOR inhibitors in treating RNF43_p.G659fs mutant cancers.


Subject(s)
Colorectal Neoplasms , Phosphatidylinositol 3-Kinases , TOR Serine-Threonine Kinases , Ubiquitin-Protein Ligases , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Humans , Mutation , Phosphatidylinositol 3-Kinases/genetics , TOR Serine-Threonine Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
2.
Genome Med ; 14(1): 10, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35086559

ABSTRACT

BACKGROUND: The COVID-19 pandemic has resulted in 275 million infections and 5.4 million deaths as of December 2021. While effective vaccines are being administered globally, there is still a great need for antiviral therapies as antigenically novel SARS-CoV-2 variants continue to emerge across the globe. Viruses require host factors at every step in their life cycle, representing a rich pool of candidate targets for antiviral drug design. METHODS: To identify host factors that promote SARS-CoV-2 infection with potential for broad-spectrum activity across the coronavirus family, we performed genome-scale CRISPR knockout screens in two cell lines (Vero E6 and HEK293T ectopically expressing ACE2) with SARS-CoV-2 and the common cold-causing human coronavirus OC43. Gene knockdown, CRISPR knockout, and small molecule testing in Vero, HEK293, and human small airway epithelial cells were used to verify our findings. RESULTS: While we identified multiple genes and functional pathways that have been previously reported to promote human coronavirus replication, we also identified a substantial number of novel genes and pathways. The website https://sarscrisprscreens.epi.ufl.edu/ was created to allow visualization and comparison of SARS-CoV2 CRISPR screens in a uniformly analyzed way. Of note, host factors involved in cell cycle regulation were enriched in our screens as were several key components of the programmed mRNA decay pathway. The role of EDC4 and XRN1 in coronavirus replication in human small airway epithelial cells was verified. Finally, we identified novel candidate antiviral compounds targeting a number of factors revealed by our screens. CONCLUSIONS: Overall, our studies substantiate and expand the growing body of literature focused on understanding key human coronavirus-host cell interactions and exploit that knowledge for rational antiviral drug development.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Genome, Viral , Host-Pathogen Interactions/genetics , SARS-CoV-2/genetics , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/pathology , COVID-19/virology , Chlorocebus aethiops , Exoribonucleases/antagonists & inhibitors , Exoribonucleases/genetics , Exoribonucleases/metabolism , Gene Editing/methods , HEK293 Cells , Host-Pathogen Interactions/drug effects , Humans , Microtubule-Associated Proteins/antagonists & inhibitors , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Proteins/antagonists & inhibitors , Proteins/genetics , Proteins/metabolism , RNA Interference , RNA, Guide, Kinetoplastida/metabolism , RNA, Small Interfering/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Vero Cells , Virus Replication/genetics , COVID-19 Drug Treatment
3.
Toxicol Sci ; 182(2): 260-274, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34051100

ABSTRACT

Organochlorine pesticides (OCPs) are persistent pollutants linked to diverse adverse health outcomes. Environmental exposure to OCPs has been suggested to negatively impact the immune system but their effects on cellular antiviral responses remain unknown. Transcriptomic analysis of N27 rat dopaminergic neuronal cells unexpectedly detected high level expression of genes in the interferon (IFN)-related antiviral response pathways including the IFN-induced protein with tetratricopeptide repeats 1 and 2 (Ifit1/2) and the MX Dynamin Like GTPases Mx1 and Mx2. Interestingly, treatment of N27 cells with dieldrin markedly downregulated the expression of many of these genes. Dieldrin exterted a similar effect in inhibiting IFIT2 and MX1 gene expression in human SH-SY5Y neuronal cells induced by an RNA viral mimic, polyinosinic: polycytidylic acid (poly I:C) and IFIT2/3 gene expression in human pulmonary epithelial cells exposed to human influenza H1N1 virus. Mechanistically, dieldrin induced a rapid rise in levels of intracellular reactive oxygen species (iROS) and a decrease in intracellular glutathione (GSH) levels in SH-SY5Y cells. Treatment with N-acetylcysteine, an antioxidant and GSH biosynthesis precursor, effectively blocked both dieldrin-induced increases in iROS and its inhibition of poly I:C-induced upregulation of IFIT and MX gene expression, suggesting a role for intracellular oxidative status in dieldrin's modulation of antiviral gene expression. This study demonstrates that dieldrin modulates key genes of the cellular innate immune responses that are normally involved in the host's cellular defense against viral infections. Our findings have potential relevance to understanding the organismal effects of environmentally persistent organochlorine contaminants on the mammalian cellular immune system.


Subject(s)
Influenza A Virus, H1N1 Subtype , Pesticides , Animals , Antiviral Agents , Dieldrin/toxicity , Dopaminergic Neurons , Gene Expression , Humans , Interferons , Pesticides/toxicity , Rats
4.
Curr Protoc ; 1(5): e136, 2021 May.
Article in English | MEDLINE | ID: mdl-34043288

ABSTRACT

The use of genome editing tools is expanding our understanding of various human diseases by providing insight into gene-disease interactions. Despite the recognized role of toxicants in the development of human health issues and conditions, there is currently limited characterization of their mechanisms of action, and the application of CRISPR-based genome editing to the study of toxicants could help in the identification of novel gene-environment interactions. CRISPR-based functional screens enable identification of cellular mechanisms fundamental for response and susceptibility to a given toxicant. The aim of this review is to inform future directions in the application of CRISPR technologies in toxicological studies. We review and compare different types of CRISPR-based methods including pooled, anchored, combinatorial, and perturb-sequencing screens in vitro, in addition to pooled screenings in model organisms. © 2021 Wiley Periodicals LLC.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Editing , Gene-Environment Interaction , Humans , Sequence Analysis
5.
Toxicol Sci ; 176(2): 366-381, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32421776

ABSTRACT

Organochlorine pesticides, once widely used, are extremely persistent and bio-accumulative in the environment. Epidemiological studies have implicated that environmental exposure to organochlorine pesticides including dieldrin is a risk factor for the development of Parkinson's disease. However, the pertinent mechanisms of action remain poorly understood. In this study, we carried out a genome-wide (Brunello library, 19 114 genes, 76 411 sgRNAs) CRISPR/Cas9 screen in human dopaminergic SH-SY5Y neuronal cells exposed to a chronic treatment (30 days) with dieldrin to identify cellular pathways that are functionally related to the chronic cellular toxicity. Our results indicate that dieldrin toxicity was enhanced by gene disruption of specific components of the ubiquitin proteasome system as well as, surprisingly, the protein degradation pathways previously implicated in inherited forms of Parkinson's disease, centered on Parkin. In addition, disruption of regulatory components of the mTOR pathway which integrates cellular responses to both intra- and extracellular signals and is a central regulator for cell metabolism, growth, proliferation, and survival, led to increased sensitivity to dieldrin-induced cellular toxicity. This study is one of the first to apply a genome-wide CRISPR/Cas9-based functional gene disruption screening approach in an adherent neuronal cell line to globally decipher cellular mechanisms that contribute to environmental toxicant-induced neurotoxicity and provides novel insight into the dopaminergic neurotoxicity associated with chronic exposure to dieldrin.


Subject(s)
CRISPR-Cas Systems , Dieldrin , Dopaminergic Neurons/drug effects , Pesticides , Cell Line , Dieldrin/toxicity , Humans , Pesticides/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL