Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(32): 11903-11912, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37506302

ABSTRACT

For the past few years, short-lived unsaturated halocarbons have been marketed as environmentally friendly replacements for long-lived halogenated greenhouse gases and ozone-depleting substances. The phase-in of unsaturated halocarbons for various applications, such as refrigeration and foam blowing, can be tracked by their emergence and increase in the atmosphere. We present the first atmospheric measurements of the hydrofluoroolefin (HFO) HFO-1336mzz(Z) ((Z)-1,1,1,4,4,4-hexafluoro-2-butene, cis-CF3CH═CHCF3), a newly used unsaturated hydrofluorocarbon. HFO-1336mzz(Z) has been detected in >90% of all measurements since 2018 during multi-month campaigns at three Swiss and one Dutch location. Since 2019, it is found in ∼30% of all measurements that run continuously at the Swiss high-altitude Jungfraujoch station. During pollution events, mole fractions of up to ∼10 ppt were observed. Based on our measurements, Swiss and Dutch emissions were estimated at 2-7 Mg yr-1 (2019-2021) and 30 Mg yr-1 (2022), respectively. Modeled spatial emission distributions only partly conform to population density in both countries. Monitoring the presence of new unsaturated halocarbons in the atmosphere is crucial since long-term effects of their degradation products are still debated. Furthermore, the production of HFOs involves climate-active substances, which may leak to the atmosphere─in the case of HFO-1336mzz(Z), for example, the ozone-depleting CFC-113a (CF3CCl3).


Subject(s)
Greenhouse Gases , Hydrocarbons, Halogenated , Ozone , Hydrocarbons, Halogenated/analysis , Environmental Monitoring , Atmosphere
2.
Chimia (Aarau) ; 76(4): 331-335, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-38069774

ABSTRACT

To mitigate the environmental impacts of synthetic halocarbons it is crucial to quantify their emissions to the atmosphere on different spatial scales. For this, top-down modelling approaches were developed, relying on atmospheric concentration observations. However, increased sensitivity on country-scale is needed, requiring a denser measurement network and models operating on a regional scale. In this light, we conducted an extensive study to assess Swiss halocarbon emissions, with high sensitivity to the regional emissions sources.

3.
Environ Sci Technol ; 54(12): 7291-7301, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32388979

ABSTRACT

Many organic contaminants entering the aquatic environment feature stereogenic structural elements that give rise to enantiomerism. While abiotic processes usually act identical on enantiomers, biotic processes, such as biodegradation often result in enantiomeric fractionation (EFr), i.e., the change of the relative abundance of enantiomers. Therefore, EFr offers the opportunity to differentiate biodegradation in complex environmental systems from abiotic processes. In this study, an achiral-chiral two-dimensional liquid chromatographic method for the enantioseparation of selected pharmaceuticals was developed. This method was then applied to determine the enantiomeric compositions of eight chiral pharmaceuticals in 20 water-sediment test flumes and test EFr as an indicator of biodegradation. While all eight substances were attenuated by at least 60%, five (atenolol, metoprolol, celiprolol, propranolol, and flecainide) displayed EFr. No EFr was observed for citalopram, fluoxetine, and venlafaxine despite almost complete attenuation (80 to 100%). Celiprolol, a barely studied ß-blocker, revealed the most distinct EFr among all investigated substances; however, EFr varied considerably with biodiversity. Celiprolol-H2 was identified as a biological transformation product possibly formed by reduction of the celiprolol keto group through a highly regio- and enantioselective carbonyl reductase. While celiprolol-H2 was observed across all flumes, as expected, its formation was faster in flumes with high bacterial diversity where also EFr was highest. Overall, EFr and transformation product formation together served as good indicators of biological processes; however, the strong dependence of EFr on biodiversity limits its usefulness in complex environmental systems.


Subject(s)
Water Pollutants, Chemical , Water , Biodegradation, Environmental , Biotransformation , Stereoisomerism , Water Pollutants, Chemical/analysis
4.
Chimia (Aarau) ; 74(3): 136-141, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32197671

ABSTRACT

CFCs (chlorofluorocarbons) and other strong ozone-depleting halogenated organic trace gases were used in numerous industrial, household and agriculture applications. First atmospheric measurements of CFCs were performed in the 1970s, well ahead of the detection of the ozone hole in the 1980s. The continuous observation of these ozone-depleting substances (ODSs) is crucial for monitoring their global ban within the Montreal Protocol. In addition, also HFCs (fluorinated hydrocarbons) are measured, which were introduced as substitutes of ODSs and are potent greenhouse gases. Since 2000, Empa continuously measures more than 50 halogenated trace gases at the high-Alpine station of Jungfraujoch (3850 m asl) as part of the global AGAGE network (Advanced Global Atmospheric Gases Experiment). Jungfraujoch is the highest location worldwide where such measurements are performed, and the site where several of these compounds were measured in the atmosphere for the first time. The measurements at Jungfraujoch and at other globally well-positioned sites serve as an early warning system, i. e. before potentially harmful halogenated organic substances can accumulate and detrimentally affect the natural environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...