Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 36(7): 1887-1897, 2022 07.
Article in English | MEDLINE | ID: mdl-35643867

ABSTRACT

We investigated genomic and transcriptomic changes in paired tumor samples of 29 in-house multiple myeloma (MM) patients and 28 patients from the MMRF CoMMpass study before and after treatment. A change in clonal composition was found in 46/57 (82%) of patients, and single-nucleotide variants (SNVs) increased from median 67 to 86. The highest increase in prevalence of genetic aberrations was found in RAS genes (60% to 72%), amp1q21 (18% to 35%), and TP53 (9% to 18%). The SBS-MM1 mutation signature was detected both in patients receiving high and low dose melphalan. A total of 2589 genes were differentially expressed between early and late samples (FDR < 0.05). Gene set enrichment analysis (GSEA) showed increased expression of E2F, MYC, and glycolysis pathways and a decreased expression in TNF-NFkB and TGFbeta pathways in late compared to early stage. Single sample GSEA (ssGSEA) scores of differentially expressed pathways revealed that these changes were most evident in end-stage disease. Increased expression of several potentially targetable genes was found at late disease stages, including cancer-testis antigens, XPO1 and ABC transporters. Our study demonstrates a transcriptomic convergence of pathways supporting increased proliferation and metabolism during disease progression in MM.


Subject(s)
Multiple Myeloma , Clonal Evolution/genetics , Genome , Genomics , Humans , Male , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Transcriptome
2.
Br J Haematol ; 197(6): 697-708, 2022 06.
Article in English | MEDLINE | ID: mdl-35254660

ABSTRACT

B-cell depletion induced by anti-cluster of differentiation 20 (CD20) monoclonal antibody (mAb) therapy of patients with lymphoma is expected to impair humoral responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccination, but effects on CD8 T-cell responses are unknown. Here, we investigated humoral and CD8 T-cell responses following two vaccinations in patients with lymphoma undergoing anti-CD20-mAb therapy as single agent or in combination with chemotherapy or other anti-neoplastic agents during the last 9 months prior to inclusion, and in healthy age-matched blood donors. Antibody measurements showed that seven of 110 patients had antibodies to the receptor-binding domain of the SARS-CoV-2 Spike protein 3-6 weeks after the second dose of vaccination. Peripheral blood CD8 T-cell responses against prevalent human leucocyte antigen (HLA) class I SARS-CoV-2 epitopes were determined by peptide-HLA multimer analysis. Strong CD8 T-cell responses were observed in samples from 20/29 patients (69%) and 12/16 (75%) controls, with similar median response magnitudes in the groups and some of the strongest responses observed in patients. We conclude that despite the absence of humoral immune responses in fully SARS-CoV-2-vaccinated, anti-CD20-treated patients with lymphoma, their CD8 T-cell responses reach similar frequencies and magnitudes as for controls. Patients with lymphoma on B-cell depleting therapies are thus likely to benefit from current coronavirus disease 2019 (COVID-19) vaccines, and development of vaccines aimed at eliciting T-cell responses to non-Spike epitopes might provide improved protection.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 Vaccines , COVID-19 , Lymphoma , Rituximab , Antibodies, Viral , CD8-Positive T-Lymphocytes/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Epitopes , Humans , Lymphoma/drug therapy , Rituximab/therapeutic use , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
4.
Oncotarget ; 9(62): 32024-32035, 2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30174794

ABSTRACT

Characterization of CD8+ T cells in the tumor microenvironment (TME) is important to predict responses to checkpoint therapy. The TME in multiple myeloma is the bone marrow, which also is an immune organ where immune responses are generated and memory cells stored. The presence of T cells with other specificities than the tumor in the bone marrow may affect the search for biomarkers to predict responses to immunotherapy in myeloma. Here, we found similar proportions of PD1+ CD8+ T cells and similar levels of PD1 expression on CD8+ T cells in the bone marrow of myeloma patients and healthy controls. PD1 expression on CD8+ T cells did not correlate with tumor load suggesting that at least some of the PD1+ CD8+ T cells were specific for non-myeloma antigens. Indeed, PD1+ EBV-specific CD8+ T cells were detected it the bone marrow of patients. Terminal effectors (Teff), effector memory (Tem) and central memory (Tcm) cells as well as exhausted T cells were all found in the myeloma bone marrow. However, myeloma patients had more terminal effectors and fewer memory cells than healthy controls suggesting that the tumor generate an immune response against myeloma cells in the bone marrow. The presence of CD8 EOMEShigh Tbetlow T cells with intermediate levels of PD1 in myeloma patients suggests that T cell types, that are known to be responsive to checkpoint therapy, are found at the tumor site.

5.
Haematologica ; 102(7): 1266-1272, 2017 07.
Article in English | MEDLINE | ID: mdl-28385781

ABSTRACT

Circulating tumor DNA is a promising biomarker to monitor tumor load and genome alterations. We explored the presence of circulating tumor DNA in multiple myeloma patients and its relation to disease activity during long-term follow-up. We used digital droplet polymerase chain reaction analysis to monitor recurrent mutations, mainly in mitogen activated protein kinase pathway genes NRAS, KRAS and BRAF Mutations were identified by next-generation sequencing or polymerase chain reaction analysis of bone marrow plasma cells, and their presence analyzed in 251 archived serum samples obtained from 20 patients during a period of up to 7 years. In 17 of 18 patients, mutations identified in bone marrow during active disease were also found in a time-matched serum sample. The concentration of mutated alleles in serum correlated with the fraction in bone marrow plasma cells (r=0.507, n=34, P<0.002). There was a striking covariation between circulating mutation levels and M protein in ten out of 11 patients with sequential samples. When relapse evaluation by circulating tumor DNA and M protein could be directly compared, the circulating tumor DNA showed relapse earlier in two patients (3 and 9 months), later in one patient (4 months) and in three patients there was no difference. In three patients with transformation to aggressive disease, the concentrations of mutations in serum increased up to 400 times, an increase that was not seen for the M protein. In conclusion, circulating tumor DNA in myeloma is a multi-faceted biomarker reflecting mutated cells, total tumor mass and transformation to a more aggressive disease. Its properties are both similar and complementary to M protein.


Subject(s)
Biomarkers, Tumor , Cell-Free Nucleic Acids , DNA, Neoplasm , Multiple Myeloma/genetics , Mutation , Aged , Biomarkers , DNA Mutational Analysis , Disease Progression , Female , Humans , Liquid Biopsy , Male , Middle Aged , Multiple Myeloma/diagnosis , Multiple Myeloma/mortality , Multiple Myeloma/therapy , Myeloma Proteins , Neoplasm Staging , Retrospective Studies , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...